Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 18385

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of prototype for TEF-T integral control system of J-PARC

Sakai, Kenji; Obayashi, Hironari; Saito, Shigeru; Sasa, Toshinobu; Sugawara, Takanori; Watanabe, Akihiko*

JAEA-Technology 2019-009, 18 Pages, 2019/07

JAEA-Technology-2019-009.pdf:2.34MB

Construction of Transmutation Experimental Facility (TEF) is under planning in the Japan Proton Accelerator Research Complex (J-PARC) program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). ADS Target Test Facility (TEF-T) in TEF will develop spallation target technology and study on target materials with irradiating high intensity proton beams on a lead-bismuth eutectic (LBE) target. For safe and efficient beam operation, a general control system (GCS) will be constructed in TEF-T. GCS comprises several subsystems, such as a network system (LAN), an integral control system (ICS), an interlock system (ILS), and a timing distribution system (TDS) according to their roles. Especially, the ICS plays the important role that executes integral operations in the entire facility, acquires, stores and distributes operation data. We planned to develop a prototype of the ICS, to evaluate its concrete performances such as data transmission speeds, data storage capability, control functions, long-term stability of the system, and to utilize them for design of the actual ICS. This report mentions to product the prototype of ICS and to apply it to remote operations of instruments for developing LBE target technology.

Journal Articles

Proton chelating ligands drive improved chemical separations for rhodium

Narita, Hirokazu*; Nicolson, R. M.*; Motokawa, Ryuhei; Ito, Fumiyuki*; Morisaku, Kazuko*; Goto, Midori*; Tanaka, Mikiya*; Heller, W. T.*; Shiwaku, Hideaki; Yaita, Tsuyoshi; et al.

Inorganic Chemistry, 58(13), p.8720 - 8734, 2019/07

Journal Articles

Study on B$$_{4}$$C decoupler with burn-up reduction aiming at 1-MW pulsed neutron source

Oi, Motoki; Teshigawara, Makoto; Harada, Masahide; Ikeda, Yujiro

Journal of Nuclear Science and Technology, 56(7), p.573 - 579, 2019/07

In pulsed neutron sources, a neutron absorber called decoupler is attached to the moderator to sharpen the neutron pulses for achieving good neutron energy resolutions. Cadmium and boron carbide (B$$_{4}$$C) are widely used as the decoupler materials. However, it is difficult to use B$$_{4}$$C in MW-class spallation neutron sources owing to high burn-up, which decreases cut-off energy and increase of helium gas swelling. To solve these issues, we introduce the concept of pre-decoupler to reduce neutron absorption in the B$$_{4}$$C decoupler, which is sandwiched by appropriate neutron absorption materials. Then, we study impacts of the pre-decouplers on B$$_{4}$$C decoupler in terms of burn-up by performing simplified model calculations. It is shown that neutron absorption in B$$_{4}$$C is reduced by 60% by using a Cd pre-decoupler without neutron intensity penalty. Moreover, helium gas swelling in B$$_{4}$$C is restrained to be one-third of the value when not using the pre-decoupler.

JAEA Reports

Assessment report on research and development activities in FY 2018; Activity "Research and development in science and technology using neutron and synchrotron radiation" (Interim report)

Materials Sciences Research Center

JAEA-Evaluation 2019-005, 121 Pages, 2019/06

JAEA-Evaluation-2019-005.pdf:12.19MB

Japan Atomic Energy Agency (JAEA) consulted an assessment committee, "Evaluation Committee of Research Activities for Research and Development in Science and Technology using Neutron and Synchrotron Radiation" (Committee) for interim assessment of "Research and Development in Science and Technology using Neutron and Synchrotron Radiation", in accordance with "General Guideline for the Evaluation of Government Research and Development (R&D) Activities" by Cabinet Office, Government of Japan, "Guideline for Evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology" and "Regulation on Conduct for Evaluation of R&D Activities" by JAEA. In response to the JAEA's request, the Committee assessed the research program and activities on Research and Development in Science and Technology using Neutron and Synchrotron Radiation in Materials Sciences Research Center (MSRC) and Neutron Science Section (NSS) in Materials and Life Science Division (MLSD) of J-PARC Center during the period from April 2015 to December 2018. The Committee evaluated the management, research and development activities based on the explanatory documents prepared by MSRC and NSS and oral presentations with questions-and-answers by the Director General and the Division Heads of the MSRC and the Section Leader of the NSS. This report summarizes the results of the assessment by the Committee with the Committee report attached.

JAEA Reports

Assessment report on research and development activities in FY 2018; Activity "Research and development on J-PARC" (Interim report)

J-PARC Center

JAEA-Evaluation 2019-003, 52 Pages, 2019/06

JAEA-Evaluation-2019-003.pdf:6.61MB

Evaluation Committee of Research Activities for J-PARC for interim assessment of Japan Proton Accelerator Research Complex evaluated the management and research activities of J-PARC center on the explanatory documents and oral presentations during the period from April 2015 to December 2018. This report summarizes the results of the assessment by the Committee with the Committee report attached.

Journal Articles

Structural approach to understanding the solubility of metal hydroxides

Kobayashi, Taishi*; Nakajima, Shogo*; Motokawa, Ryuhei; Matsumura, Daiju; Saito, Takumi*; Sasaki, Takayuki*

Langmuir, 35(24), p.7995 - 8006, 2019/06

Journal Articles

Evidence for singular-phonon-induced nematic superconductivity in a topological superconductor candidate Sr$$_{0.1}$$Bi$$_{2}$$Se$$_{3}$$

Wang, J.*; Ran, K.*; Li, S.*; Ma, Z.*; Bao, S.*; Cai, Z.*; Zhang, Y.*; Nakajima, Kenji; Kawamura, Seiko; $v{C}$erm$'a$k, P.*; et al.

Nature Communications (Internet), 10, p.2802_1 - 2802_6, 2019/06

Journal Articles

Measurement of neutron scattering cross section of nano-diamond with particle diameter of approximately 5 nm in energy range of 0.2 meV to 100 meV

Teshigawara, Makoto; Tsuchikawa, Yusuke*; Ichikawa, Go*; Takata, Shinichi; Mishima, Kenji*; Harada, Masahide; Oi, Motoki; Kawamura, Yukihiko*; Kai, Tetsuya; Kawamura, Seiko; et al.

Nuclear Instruments and Methods in Physics Research A, 929, p.113 - 120, 2019/06

A nano-diamond is an attractive neutron reflection material below cold neutron energy. The total neutron cross section of a nano-diamond was derived from a neutron transmission measurement over the neutron energy range of 0.2 meV to 100 meV because total neutron cross section data were not available. The total cross section of a nano-diamond with particle size of approximately 5 nm increased with a decrease in neutron energy to 0.2 meV. It was approximately two orders of magnitude larger than that of graphite at 0.2 meV. The contribution of inelastic scattering to the total cross section was to be shown negligible small at neutron energies of 1.2, 1.5, 1.9, 2.6, and 5.9 meV in the inelastic neutron scattering measurement. Moreover, small-angle neutron scattering measurements of the nano-diamond showed a large scattering cross section in the forward direction for low neutron energies.

Journal Articles

Status of neutron spectrometers at J-PARC

Kajimoto, Ryoichi; Yokoo, Tetsuya*; Nakamura, Mitsutaka; Kawakita, Yukinobu; Matsuura, Masato*; Endo, Hitoshi*; Seto, Hideki*; Ito, Shinichi*; Nakajima, Kenji; Kawamura, Seiko

Physica B; Condensed Matter, 562, p.148 - 154, 2019/06

Journal Articles

Anomalous structure of liquid Bi studied by coherent QENS and time-space correlation analysis

Kawakita, Yukinobu; Kikuchi, Tatsuya*

Hamon, 29(2), p.91 - 94, 2019/05

Bismuth (Bi) has a double-layered structure based on Peierls distortion in crystalline phase. Complicated static structure in liquid phase which cannot be interpreted by a simple packing model has been conjectured that Peierls distortion may remain even in liquid phase. We measured quasi-elastic neutron scattering (QENS) of liquid Bi by using AMATERAS installed at BL14 beamport of Materials and Life Science Experimental Facility (MLF) in J-PARC and analyzed coherent QENS spectra. A time-space correlation function revealed that the nearest neighboring shell followed by a shoulder-like structure at longer side consists of four contributions of short and long correlations with relatively long relaxation time of a few tens pico second and medium-ranged and the longest correlations with a short relaxation time of sub-pico second, which is a direct observation of the existing layered structure in liquid Bi. In this article, we report the above scientific results and the method to analyze coherent QENS by the time-space correlation function.

Journal Articles

Triplon band splitting and topologically protected edge states in the dimerized antiferromagnet

Nawa, Kazuhiro*; Tanaka, Kimihito*; Kurita, Nubuyuki*; Sato, Taku*; Sugiyama, Haruki*; Uekusa, Hidehiro*; Kawamura, Seiko; Nakajima, Kenji; Tanaka, Hidekazu*

Nature Communications (Internet), 10, p.2096_1 - 2096_8, 2019/05

Search for topological materials has been actively promoted in the field of condensed matter physics for their potential application in energy-efficient information transmission and processing. Recent studies have revealed that topologically invariant states, such as edge states in topological insulators, can emerge not only in a fermionic electron system but also in a bosonic system, enabling nondissipative propagation of quasiparticles. Here we report the topologically nontrivial triplon bands measured by inelastic neutron scattering on the spin-1/2 two-dimensional dimerized antiferromagnet Ba$$_{2}$$CuSi$$_{2}$$O$$_{6}$$Cl$$_{2}$$. The excitation spectrum exhibits two triplon bands that are clearly separated by a band gap due to a small alternation in interdimer exchange interaction, consistent with a refined crystal structure. By analytically modeling the triplon dispersion, we show that Ba$$_{2}$$CuSi$$_{2}$$O$$_{6}$$Cl$$_{2}$$ is the first bosonic realization of the coupled Su-Schrieffer-Heeger model, where the presence of topologically protected edge states is prompted by a bipartite nature of the lattice.

Journal Articles

Coexistence of ferromagnetic and stripe-type antiferromagnetic spin fluctuations in YFe$$_{2}$$Ge$$_{2}$$

Wo, H.*; Wang, Q.*; Shen, Y.*; Zhang, X.*; Hao, Y.*; Feng, Y.*; Shen, S.*; He, Z.*; Pan, B.*; Wang, W.*; et al.

Physical Review Letters, 122(21), p.217003_1 - 217003_5, 2019/05

Journal Articles

Crystal structure change of katoite, Ca$$_{3}$$Al$$_{2}$$(O$$_{4}$$D$$_{4}$$)$$_{3}$$, with temperature at high pressure

Kyono, Atsushi*; Kato, Masato*; Sano, Asami; Machida, Shinichi*; Hattori, Takanori

Physics and Chemistry of Minerals, 46(5), p.459 - 469, 2019/05

 Percentile:100

To reveal the decomposition mechanism with temperature under high-pressure, crystal structure of a hydrogrossular, katoite Ca$$_{3}$$Al$$_{2}$$(O$$_{4}$$D$$_{4}$$)$$_{3}$$ has been studied by in-situ neutron diffraction at 8 GPa. Although unusual expansion behavior was discerned at 200-400$$^circ$$C, the unit cell was continuously expanded up to 850$$^circ$$C. At 900$$^circ$$C, katoite was decomposed, indicating that pressure strongly increases dehydration temperature from 300$$^circ$$C to 900$$^circ$$C. On release of pressure, the katoite reappear together with corundum and portlandite. At 8 GPa, CaO$$_{8}$$ and AlO$$_{6}$$ polyhedra expand with temperature up to 850$$^circ$$C by about 8% and 13%, respectively. On the other hand, tetrahedral interstices are isotopically squeezed by about 10%: due to the expansion of above polyhedra. The neighboring D-D distance remains almost unchanged in this temperature range, while the O-D bond distance shrinks drastically just before decomposition. This finding suggests that the shortening of O-D distance caused by the D-D repulsion destabilizes the O-D bond, which induces the thermal decomposition of katoite.

Journal Articles

Interstitial hydrogen atoms in face-centered cubic iron in the Earth's core

Ikuta, Daijo*; Otani, Eiji*; Sano, Asami; Shibazaki, Yuki*; Terasaki, Hidenori*; Yuan, L.*; Hattori, Takanori

Scientific Reports (Internet), 9, p.7108_1 - 7108_8, 2019/05

Hydrogen is likely one of the light elements in the Earth's core. Despite its importance, no direct observation has been made of hydrogen in an iron lattice at high pressure. We made the first direct determination of site occupancy and volume of interstitial hydrogen in a face-centered cubic (fcc) iron lattice up to 12 GPa and 1200 K using the in situ neutron diffraction method. At pressures $$<$$ 5 GPa, the hydrogen content in the fcc iron hydride lattice (x) was small at x $$<$$ 0.3, but increased to x $$>$$ 0.8 with increasing pressure. Hydrogen atoms occupy both octahedral (O) and tetrahedral (T) sites; typically 0.870 in O-sites and 0.057 in T-sites at 12 GPa and 1200 K. The fcc lattice expanded approximately linearly at a rate of 2.22 $AA $^{3}$$ per hydrogen atom, which is higher than previously estimated (1.9 $AA $^{3}$$/H). The lattice expansion by hydrogen dissolution was negligibly dependent on pressure. The large lattice expansion by interstitial hydrogen reduced the estimated hydrogen content in the Earth's core that accounted for the density deficit of the core. The revised analyses indicate that whole core may contain hydrogen of 80 times of the ocean mass with 79 and 0.8 ocean mass for the outer and inner cores, respectively.

Journal Articles

Characterization of BaZrO$$_{3}$$ nanocolumns in Zr-added (Gd,Y)Ba$$_{2}$$Cu$$_{3}$$Ox superconductor tape by anomalous small-angle X-ray scattering

Oba, Yojiro; Sasaki, Hirokazu*; Yamazaki, Satoshi*; Nakasaki, Ryusuke*; Onuma, Masato*

Superconductor Science and Technology, 32(5), p.055011_1 - 055011_5, 2019/05

 Percentile:100(Physics, Applied)

Journal Articles

Quantum optimal control of rovibrational excitations of a diatomic alkali halide: one-photon vs. two-photon processes

Kurosaki, Yuzuru*; Yokoyama, Keiichi

Universe (Internet), 5(5), p.109_1 - 109_15, 2019/05

Regarding rovibrational transitions of diatomic alkali haride molecules, optimal waveform of laser electric field was calculated on the basis of the optimal control theory. In this study, we implemented the polarizability term into the Hamiltonian, which defines the field-molecule interaction. As a result, we obtained waveforms causing both one- and two-photon processes in a relatively high electric field regime, while waveforms causing only one-photon process was observed in a weak filed regime as well as the previous study. These results imply that the effect of two-photon process is successfully taken into account in the optimal control theory calculation. Now we can expect more reliable calculation even for strong laser field.

Journal Articles

Effect of artificial defects on the very high cycle fatigue behavior of 316L stainless steel

Xiong, Z.*; Naoe, Takashi; Futakawa, Masatoshi

Metals, 9(4), p.412_1 - 412_11, 2019/04

 Percentile:100

The effect of surface defects on the very high cycle fatigue (VHCF) behavior were investigated on the solution annealed (SA) and cold-rolled (CW) 316L. Surface defects were artificially created using indentation. VHCF test was conducted using an ultrasonic fatigue method. The results showed that the fatigue crack initiation was independent of the indent with the applied range of depth in this research. Furthermore, the critical depth of the indent was evaluated based on an empirical formula. In the case of SA, the VHCF strength was not affected when the indent depth was less than 40 $$mu$$m, which is consistent with the value obtained from the empirical formula. In the case of 20% CW, VHCF strength was not affected when the indent depth was less than 80 $$mu$$m. The results were much larger than the results obtained from the empirical formula and might have been caused by the plastic deformation, residual stress and probable deformation induced martensite transition around the indent.

Journal Articles

Electrochemical adsorption on Pt nanoparticles in alkaline solution observed using in situ high energy resolution X-ray absorption spectroscopy

Kusano, Shogo*; Matsumura, Daiju; Ishii, Kenji*; Tanaka, Hirohisa*; Mizuki, Junichiro*

Nanomaterials (Internet), 9(4), p.642_1 - 642_14, 2019/04

Journal Articles

Negative Te spin polarization responsible for ferromagnetic order in the doped topological insulator V$$_{0.04}$$(Sb$$_{1-x}$$Bi$$_{x}$$)$$_{1.96}$$Te$$_{3}$$

Ye, M.*; Xu, T.*; Li, G.*; Qiao, S.*; Takeda, Yukiharu; Saito, Yuji; Zhu, S.-Y.*; Nurmamat, M.*; Sumida, Kazuki*; Ishida, Yukiaki*; et al.

Physical Review B, 99(14), p.144413_1 - 144413_7, 2019/04

 Percentile:100(Materials Science, Multidisciplinary)

Journal Articles

Quantitative analysis of Cs extraction by some dialkoxycalix[4]arene-crown-6 extractants

Simonnet, M.; Miyazaki, Yuji*; Suzuki, Shinichi; Yaita, Tsuyoshi

Solvent Extraction and Ion Exchange, 37(1), p.81 - 95, 2019/04

18385 (Records 1-20 displayed on this page)