Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Modelling and simulation of the source term for a sodium cooled fast reactor under hypothetical severe accident conditions; Final report of a coordinated research project

Arokiaswamy, J. A.*; Batra, C.*; Chang, J. E.*; Garcia, M.*; Herranz, L. E.*; Klimonov, I. A.*; Kriventsev, V.*; Li, S.*; Liegeard, C.*; Mahanes, J.*; et al.

IAEA-TECDOC-2006, 380 Pages, 2022/00

The IAEA coordinated research project on "Radioactive Release from the Prototype Sodium Cooled Fast Reactor under Severe Accident Conditions" was devoted to realistic numerical simulation of fission products and fuel particles inventory inside the reference sodium cooled fast reactor volumes under severe accident conditions at different time scales. The scope of analysis was divided into three parts, defined as three work packages (WPs): (1) in-vessel source term estimation; (2) primary system/containment system interface source term estimation; and, (3) in-containment phenomenology analysis. Comparison of the results obtained in WP-1 indicates that the release fractions of noble gases and cesium radionuclides, and fractions of radionuclides released to the cover gas are in a good agreement. In the analysis using a common pressure history in WP-2, the results were in good agreement indicating that the accuracy of the analysis method of each institution is almost the same. The standalone case, which uses a set of pre-defined release fractions, was defined for WP-3 which enables to decouple this part of analysis from previous WPs. There is broad consensus among the predicted results by all the participants in WP-3.

Journal Articles

Development of a reference database for beta-delayed neutron emission

Dimitriou, P.*; Dillmann, I.*; Singh, B.*; Piksaikin, V.*; Rykaczewski, K. P.*; Tain, J. L.*; Algora, A.*; Banerjee, K.*; Borzov, I. N.*; Cano-Ott, D.*; et al.

Nuclear Data Sheets, 173, p.144 - 238, 2021/03

 Times Cited Count:24 Percentile:96.52(Physics, Nuclear)

$$beta$$-delayed neutron emission has been of interest since the discovery of nuclear fission. In nuclear power reactors, delayed-neutron data play a crucial role in reactor kinetics calculations and safe operation. $$beta$$-delayed neutron data also have a significant impact in the field of nuclear structure and astrophysics especially as nuclei farther away from stability are explored at the new generation of radioactive beam facilities. Several compilations of $$beta$$-decay half-lives and delayed-neutron emission probabilities are available, however, complete documentation of measurements and evaluation procedures is often missing for these properties. Efforts to address this gap in nuclear data and create an updated compilation and evaluation of $$beta$$-delayed neutron properties were undertaken under the auspices of the International Atomic Energy Agency (IAEA) which formed a Coordinated Research Project (CRP) on "Development of a Reference Database of Beta-delayed Neutron Emission Data". In this paper we summarize the work that was performed and present the results of the CRP.

Journal Articles

CIELO collaboration summary results; International evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen

Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Kahler, A. C.*; Talou, P.*; Plompen, A. J.*; Schillebeeckx, P.*; et al.

Nuclear Data Sheets, 148, p.189 - 213, 2018/02

 Times Cited Count:66 Percentile:98.06(Physics, Nuclear)

The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear facilities - $$^{235}$$U, $$^{238}$$U, $$^{239}$$Pu, $$^{56}$$Fe, $$^{16}$$O and $$^{1}$$H - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality. This report summarizes our results and outlines plans for the next phase of this collaboration.

Journal Articles

Development of $$^{99m}$$Tc production from (n,$$gamma$$)$$^{99}$$Mo based on solvent extraction

Kimura, Akihiro; Awaludin, R.*; Shiina, Takayuki*; Tanase, Masakazu*; Kawauchi, Yukimasa*; Gunawan, A. H.*; Lubis, H.*; Sriyono*; Ota, Akio*; Genka, Tsuguo; et al.

Proceedings of 3rd Asian Symposium on Material Testing Reactors (ASMTR 2013), p.109 - 115, 2013/11

JP, 2011-173260   Patent publication (In Japanese)

$$^{99m}$$Tc is generated by decay of $$^{99}$$Mo. Production of $$^{99}$$Mo is carried out by (n,f) method with high enriched uranium targets, and the production are currently producing to meet about 95% of global supply. Recently, it is difficult to carry out a stable supply for some problems such as aging of reactors etc. Furthermore, the production has difficulties in nuclear proliferation resistance etc. Thus, (n,$$gamma$$) method has lately attracted considerable attention. The (n,$$gamma$$) method has several advantages, but the extremely low specific activity makes its uses less convenient than (n,f) method. We proposed a method based on the solvent extraction, followed by adsorption of $$^{99m}$$Tc with alumina column. In this paper, a practical production of $$^{99m}$$Tc was tried by the method with 1Ci of $$^{99}$$Mo produced in MPR-30. The recovery yields were approximately 70%. Impurity of $$^{99}$$Mo was less than 4.0$$times$$10$$^{-5}$$% and the radiochemical purity was over 99.2%.

Journal Articles

Status of $$^{99}$$Mo-$$^{99m}$$Tc production development by (n,$$gamma$$) reaction

Tsuchiya, Kunihiko; Mutalib, A.*; Chakrov, P.*; Kaminaga, Masanori; Ishihara, Masahiro; Kawamura, Hiroshi

JAEA-Conf 2011-003, p.137 - 141, 2012/03

As one of effective uses of the JMTR, JAEA has a plan to produce $$^{99}$$Mo by (n,$$gamma$$) method, a parent nuclide of $$^{99m}$$Tc. In case of Japan, the supplying of $$^{99}$$Mo depends only on imports from foreign countries, the R&D on production method of $$^{99}$$Mo-$$^{99m}$$Tc has been performed with foreign countries and Japanese industrial users under the cooperation programs. The main R&D items for the production are (1) Fabrication of irradiation target such as the sintered MoO$$_{3}$$ pellets, (2) Separation and concentration of $$^{99m}$$Tc by the solvent extraction from Mo solution, (3) Examination of $$^{99m}$$Tc solution for a medicine, and (4) Mo recycling from Mo generator and solution. Especially, it is important to establish the separation and extraction methods in the item (2) and the experiments and information exchanges in some methods have been carried out under the international cooperation. In this paper, the status of the R&D is introduced for the production of $$^{99}$$Mo-$$^{99m}$$Tc.

JAEA Reports

Feasibility study of sublimation type $$^{99m}$$Tc master-milker; Comparison with PZC based wet method

Ishitsuka, Etsuo; Yamabayashi, Hisamichi*; Tanase, Masakazu*; Fujisaki, Saburo*; Sato, Norihito*; Hori, Naohiko; Awaludin, R.*; Gunawan, A. H.*; Lubis, H.*; Mutalib, A.*

JAEA-Technology 2011-019, 18 Pages, 2011/06

JAEA-Technology-2011-019.pdf:2.61MB

Feasibility study of sublimation type $$^{99m}$$Tc master-milker was carried out as a $$^{99}$$Mo/$$^{99m}$$T production development with the JMTR. As the feasibility study, the experimental equipment for sublimation method and wet method with PZC based $$^{99m}$$Tc solution were tentatively manufactured, and their properties as the master-milker were investigated by comparing two methods with each other. As a result, it was found that the $$^{99m}$$Tc recovery rate and process time of the sublimation method were about 80% and 1.5 hour, respectively, and the similar values were observed with the wet method. Superior points of the sublimation method are easier operation and reusability of the used MoO$$_{3}$$ comparing with the wet method. On the other hand, disadvantageous point is that the $$^{99m}$$Tc recovery rate decreases with the increase of treating amount of MoO$$_{3}$$.

6 (Records 1-6 displayed on this page)
  • 1