Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 196

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2019

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2023-006, 153 Pages, 2023/06

JAEA-Review-2023-006.pdf:5.74MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Management Department and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Criticality and Hot Examination Technology and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Medium- to Long term Plan" successfully and effectively. And, four research centers which are Advanced Science Research Center, Nuclear Science and Engineering Center, Nuclear Engineering Research Collaboration Center and Materials Sciences Research Center, are transferred to NSRI newly. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2019 as well as the activity on research and development carried out by Collaborative Laboratories for Advanced Decommissioning Science, Nuclear Safety Research Center and activities of Nuclear Human Resource Development Center, using facilities of NSRI.

JAEA Reports

Annual report for FY2021 on the activities of Department of Decommissioning and Waste Management (April 1, 2021 - March 31, 2022)

Department of Decommissioning and Waste Management

JAEA-Review 2023-001, 136 Pages, 2023/06

JAEA-Review-2023-001.pdf:10.65MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2021 to March 31, 2022. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2021 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 206 m$$^{3}$$ of combustible solid wastes and 155 m$$^{3}$$ of noncombustible solid wastes and 113 m$$^{3}$$ of liquid wastes. After adequate treatment, 760 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 126,827 as of the end of FY2021 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF), the Liquid Waste Treatment Facilities, the Compaction Facilities, and Fusion Neutronics Source (FNS) facilities. As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Station. The monitoring work at the playground was conducted during this period.

JAEA Reports

Annual report for FY2020 on the activities of Department of Decommissioning and Waste Management (April 1, 2020 - March 31, 2021)

Department of Decommissioning and Waste Management

JAEA-Review 2022-001, 112 Pages, 2022/06

JAEA-Review-2022-001.pdf:6.51MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2020 to March 31, 2021. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2020 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 267 m$$^{3}$$ of combustible solid wastes and 233 m$$^{3}$$ of noncombustible solid wastes and 78 m$$^{3}$$ of liquid wastes. After adequate treatment, 1,448 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 130,604 as of the end of FY2020 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF), the Liquid Waste Treatment Facilities, the Compaction Facilities, and Fusion Neutronics Source (FNS) facilities. As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Station. The monitoring work at the playground was conducted during this period.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2018

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2021-072, 141 Pages, 2022/03

JAEA-Review-2021-072.pdf:7.14MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Management Department and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Criticality and Hot Examination Technology and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Medium- to Long-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2018 as well as the activity on research and development carried out by Collaborative Laboratories for Advanced Decommissioning Science, Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center and Materials Science Research Center, and activities of Nuclear Human Resource Development Center, using facilities of NSRI.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2017

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2021-067, 135 Pages, 2022/03

JAEA-Review-2021-067.pdf:7.31MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2017 as well as the activity on research and development carried out by the Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Materials Sciences Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2015 & 2016

Nuclear Science Research Institute

JAEA-Review 2021-006, 248 Pages, 2021/12

JAEA-Review-2021-006.pdf:7.17MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Middle and long-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2015 and 2016 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Material Science Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.

JAEA Reports

Annual report for FY2019 on the activities of Department of Decommissioning and Waste Management (April 1, 2019 - March 31, 2020)

Department of Decommissioning and Waste Management

JAEA-Review 2021-002, 105 Pages, 2021/05

JAEA-Review-2021-002.pdf:9.68MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2019 to March 31, 2020. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2019 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 323 m$$^{3}$$ of noncombustible solid wastes and 111 m$$^{3}$$ of liquid wastes. After adequate treatment, 2,588 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 130,223 as of the end of FY2019 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF), the Liquid Waste Treatment Facilities, the Decontamination Facilities, and Fusion Neutronics Source (FNS) facilities. As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Plant. The monitoring work at the playground was conducted during this period.

JAEA Reports

Annual report for FY2018 on the activities of Department of Decommissioning and Waste Management (April 1, 2018 - March 31, 2019)

Department of Decommissioning and Waste Management

JAEA-Review 2020-012, 103 Pages, 2020/08

JAEA-Review-2020-012.pdf:8.17MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2018 to March 31, 2019. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.

JAEA Reports

Annual report for FY2017 on the activities of Department of Decommissioning and Waste Management (April 1, 2017 - March 31, 2018)

Department of Decommissioning and Waste Management

JAEA-Review 2019-011, 91 Pages, 2019/10

JAEA-Review-2019-011.pdf:5.25MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2017 to March 31, 2018. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2013 & 2014

Nuclear Science Research Institute

JAEA-Review 2018-036, 216 Pages, 2019/03

JAEA-Review-2018-036.pdf:19.22MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office, Fukushima Project Team and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2013 and 2014 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Research Center, Nuclear Science and Engineering Center and Quantum Beam Science Center, and activity of Nuclear Human Resource Development Center, using facilities of NSRI.

JAEA Reports

Annual report for FY2016 on the activities of Department of Decommissioning and Waste Management (April 1, 2016 - March 31, 2017)

Department of Decommissioning and Waste Management

JAEA-Review 2018-008, 87 Pages, 2018/07

JAEA-Review-2018-008.pdf:2.67MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2016 to March 31, 2017. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.

Journal Articles

Shielding performance of newly developed boron-loaded concrete for DT neutrons

Sato, Satoshi*; Konno, Chikara; Nakashima, Hiroshi; Shionaga, Ryosuke*; Nose, Hiroyuki*; Ito, Yuji*; Hashimoto, Hirohide*

Journal of Nuclear Science and Technology, 55(4), p.410 - 417, 2018/04

 Times Cited Count:1 Percentile:11.6(Nuclear Science & Technology)

In order to enhance the neutron shielding performance, we developed concrete with boron of more than 10 wt%. We performed a neutron shielding experiment using the mockup of the newly developed boron-loaded concrete and DT neutrons at FNS in JAEA, and measured the reaction rates of the $$^{93}$$Nb(n,2n)$$^{92m}$$Nb and $$^{197}$$Au(n,$$gamma$$)$$^{198}$$Au reactions in the mockup. The calculations were conducted by using MCNP-5.14 and FENDL-2.1. The calculation results agreed well with the measured ones, and we confirmed that the accuracy was very good on the atomic composition data of the boron-loaded concrete and their nuclear data. In addition, we calculated effective dose rates and reaction rates of the $$^{59}$$Co(n,$$gamma$$)$$^{60}$$Co and $$^{151}$$Eu(n,$$gamma$$)$$^{152}$$Eu reactions in the boron-loaded concrete and other concretes. It is concluded that the boron-loaded concrete has much better shielding performance for DT neutrons than other concretes.

Journal Articles

Benchmark experiment on copper with graphite by using DT neutrons at JAEA/FNS

Kwon, Saerom*; Ota, Masayuki*; Sato, Satoshi*; Konno, Chikara; Ochiai, Kentaro*

Fusion Engineering and Design, 124, p.1161 - 1164, 2017/11

 Times Cited Count:2 Percentile:19.91(Nuclear Science & Technology)

Copper is used as a material for superconducting coil in magnetic confinement fusion reactor and for accelerator-driven neutron source such as IFMIF. In our previous copper benchmark experiment, we had pointed out that the elastic scattering and capture reaction data of the copper had included some problems in the resonance region, which had caused a large underestimation of reaction rates of non-threshold reactions. In order to corroborate this issue, we carried out a new benchmark experiment on copper with graphite in the neutron field with more low energy neutrons. We measured reaction rates using the activation foils. We analyzed the experiment with MCNP code and the latest nuclear data libraries. As a result, the calculated reaction rates related to low energy neutrons, still excessively underestimated the measured ones as in the previous benchmark experiment. We also tested the nuclear data of copper modified in the previous study, where the elastic scattering and capture reaction cross section of copper. Then the calculated reaction rates with the modified copper nuclear data reproduced the measured ones well. It was revealed that the modification of the specific cross sections had been sufficient in the neutron field with more low energy neutrons.

Journal Articles

Lead benchmark experiment with DT neutrons at JAEA/FNS

Kwon, Saerom*; Ota, Masayuki*; Sato, Satoshi*; Konno, Chikara; Ochiai, Kentaro*

Fusion Science and Technology, 72(3), p.362 - 367, 2017/10

 Times Cited Count:4 Percentile:44.94(Nuclear Science & Technology)

Lead is a candidate material as a neutron multiplier, a tritium breeder and a coolant in nuclear fusion reactor system, and a $$gamma$$ ray shielding for beam dump or shielding of components in accelerator-driven neutron source such as IFMIF. A benchmark experiment on lead with DT neutrons had been performed at JAEA/FNS seven, where the reaction rates related to neutrons below a few keV had included background neutrons scattered in concrete walls of the experiment room. Thus, we designed and carried out a new benchmark experiment with a lead assembly covered with Li$$_{2}$$O blocks absorbing background neutrons. We successfully measured reaction rates of the non-threshold reactions with the activation foil method. The experiment was analyzed with MCNP code and the latest nuclear data libraries. All the calculated reaction rates (C) tended to underestimate the experimental ones (E) with the depth of the lead assembly. Although reasons of the underestimation have not been specified yet, we discovered that there are remarkable different tendencies of C/Es each reaction rate among the nuclear data libraries.

Journal Articles

Benchmark experiment on molybdenum with graphite by using DT neutrons at JAEA/FNS

Ota, Masayuki*; Kwon, Saerom*; Sato, Satoshi*; Konno, Chikara; Ochiai, Kentaro*

Fusion Engineering and Design, 114, p.127 - 130, 2017/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A new fusion neutron source is now under consideration in Japan. Type 316L stainless steel (SUS316L) which is a structural material of the target-system contains a few percent of molybdenum. In our previous benchmark experiment on molybdenum at JAEA/FNS, we found problems of the cross section data above a few hundred eV in Mo. We perform a new benchmark experiment on Mo with graphite in order to validate the Mo data in the lower energy region. Several dosimetry reaction rates and fission rates are measured in the assembly and compared with the calculated values with the Monte-Carlo transport code MCNP5-1.40 and the recent nuclear data libraries. It is suggested that the (n,$$gamma$$) cross section of $$^{95}$$Mo is underestimated in the tail region below the large resonance at 45 eV in the recent nuclear data libraries.

Journal Articles

New integral experiments for a variety of fusion reactor materials with DT neutron source at JAEA/FNS

Sato, Satoshi*; Kwon, Saerom*; Ota, Masayuki*; Ochiai, Kentaro*; Konno, Chikara

Proceedings of 26th IAEA Fusion Energy Conference (FEC 2016) (CD-ROM), 8 Pages, 2016/10

In the integral experiments on tungsten, vanadium and copper performed with the DT neutron source at JAEA/FNS over 20 years ago, the calculated results had largely underestimated the measured ones sensitive to low energy neutrons in the experiments. Since background neutrons scattered in the concrete wall of the experimental room were considered to cause these underestimations, in this study we performed new integral experiments with these materials covered with Li$$_{2}$$O blocks absorbing background neutrons. We also performed similar integral experiments on molybdenum and titanium. We analyzed these experiments by using MCNP5-1.40 with ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0. The large underestimations observed in the previous tungsten and vanadium experiments disappeared in the present experiments, which led that the nuclear data of tungsten and vanadium had no problem. On the other hand, the underestimation was not improved so much in the copper experiment, and the calculation results also did not show good agreements with the measured ones in the molybdenum and titanium experiments. Detailed analyses with partly modified nuclear data clarified the problems of the nuclear data libraries on copper, molybdenum and titanium.

Journal Articles

SrBPO$$_{5}$$:Eu$$^{2+}$$ storage phosphors for wide-range neutron detection

Sakasai, Kaoru; To, Kentaro; Nakamura, Tatsuya; Ochiai, Kentaro; Konno, Chikara

Proceedings of 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference; 21st International Symposium on Room-Temperature Semiconductor X-ray and $$gamma$$-ray detectors (NSS/MIC 2014), Vol.3 , p.1834 - 1839, 2016/05

no abstracts in English

Journal Articles

Effect of neutron energy and fluence on deuterium retention behaviour in neutron irradiated tungsten

Fujita, Hiroe*; Yuyama, Kenta*; Li, X.*; Hatano, Yuji*; Toyama, Takeshi*; Ota, Masayuki; Ochiai, Kentaro; Yoshida, Naoaki*; Chikada, Takumi*; Oya, Yasuhisa*

Physica Scripta, 2016(T167), p.014068_1 - 014068_5, 2016/02

 Times Cited Count:30 Percentile:82.55(Physics, Multidisciplinary)

The irradiation defects were introduced by Fe$$^{2+}$$ irradiation, fission neutron irradiation and D-T neutron irradiation. After the irradiation, the deuterium ions (D$$_{2}^{+}$$) implantation was performed and the D retention behavior was evaluated by thermal desorption spectroscopy. The experimental results indicated that dense vacancies and voids within the shallow region near the surface were introduced by Fe$$^{2+}$$ irradiation. The trapping state of D by vacancies and void were clearly controlled by the damage concentration and the voids would become the most stable D trapping site. For fission neutron irradiated W, most of the D was adsorbed on the surface and/or trapped by dislocation loops and no vacancies and voids for D trapping due to its lower damage concentration. D trapping by vacancies were found in the bulk of D-T neutron irradiated W, indicating that the neutron energy distribution could make a large impact on irradiation defect formation and the D retention behavior.

Journal Articles

Integral test of international reactor dosimetry and fusion file on graphite assembly with DT neutron at JAEA/FNS

Ota, Masayuki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara

Fusion Engineering and Design, 98-99, p.1847 - 1850, 2015/10

 Times Cited Count:2 Percentile:17.75(Nuclear Science & Technology)

International Reactor Dosimetry and Fusion File release 1.0 (IRDFF 1.0), has been released from the International Atomic Energy Agency (IAEA) recently. In order to validate and test IRDFF 1.0, IAEA has initiated a new Co-ordinated Research Project (CRP). Under this CRP, we have performed an integral experiment on a graphite pseudo-cylindrical slab assembly with DT neutron source at JAEA/FNS. The graphite assembly of 31.4 cm in equivalent radius and 61 cm in thickness is placed at a distance of about 20 cm from the DT neutron source. A lot of foils for the dosimetry reactions in IRDFF1.0 are inserted into the small spaces between the graphite blocks along the center axis of the assembly. After DT neutron irradiation, reaction rates for the dosimetry reactions are measured by the foil activation technique. This experiment is analyzed by using Monte Carlo neutron transport code MCNP5-1.40 with recent nuclear data libraries of ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0. The experimental assembly and DT neutron source are modeled precisely in the MCNP calculation. The reaction rates calculated with IRDFF 1.0 as the response functions for the dosimetry reactions are compared with the experimental values. Also the calculations with JENDL Dosimetry File 99 (JENDL/D-99) are performed for comparison. The results calculated with IRDFF 1.0 show good agreement with the experimental results.

Journal Articles

SPECT imaging of mice with $$^{99m}$$Tc-radiopharmaceuticals obtained from $$^{99}$$Mo produced by $$^{100}$$Mo(n,2n)$$^{99}$$Mo and fission of $$^{235}$$U

Hashimoto, Kazuyuki; Nagai, Yasuki; Kawabata, Masako; Sato, Nozomi*; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji*; Ota, Masayuki; Konno, Chikara; Ochiai, Kentaro; et al.

Journal of the Physical Society of Japan, 84(4), p.043202_1 - 043202_4, 2015/04

 Times Cited Count:7 Percentile:53.16(Physics, Multidisciplinary)

196 (Records 1-20 displayed on this page)