Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 148

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2019

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2023-006, 153 Pages, 2023/06

JAEA-Review-2023-006.pdf:5.74MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Management Department and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Criticality and Hot Examination Technology and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Medium- to Long term Plan" successfully and effectively. And, four research centers which are Advanced Science Research Center, Nuclear Science and Engineering Center, Nuclear Engineering Research Collaboration Center and Materials Sciences Research Center, are transferred to NSRI newly. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2019 as well as the activity on research and development carried out by Collaborative Laboratories for Advanced Decommissioning Science, Nuclear Safety Research Center and activities of Nuclear Human Resource Development Center, using facilities of NSRI.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2020 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2022-075, 112 Pages, 2023/03

JAEA-Review-2022-075.pdf:8.25MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility, TPL (Tritium Process Laboratory) and FEL (Free Electron Laser). This annual report describes the activities of our department in fiscal year of 2020. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2019 (Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2022-064, 97 Pages, 2023/02

JAEA-Review-2022-064.pdf:2.91MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and TPL(Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2019. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2018

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2021-072, 141 Pages, 2022/03

JAEA-Review-2021-072.pdf:7.14MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Management Department and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Criticality and Hot Examination Technology and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Medium- to Long-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2018 as well as the activity on research and development carried out by Collaborative Laboratories for Advanced Decommissioning Science, Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center and Materials Science Research Center, and activities of Nuclear Human Resource Development Center, using facilities of NSRI.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2017

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2021-067, 135 Pages, 2022/03

JAEA-Review-2021-067.pdf:7.31MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2017 as well as the activity on research and development carried out by the Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Materials Sciences Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2015 & 2016

Nuclear Science Research Institute

JAEA-Review 2021-006, 248 Pages, 2021/12

JAEA-Review-2021-006.pdf:7.17MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Middle and long-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2015 and 2016 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Material Science Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2018 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-074, 105 Pages, 2021/03

JAEA-Review-2020-074.pdf:3.72MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and TPL (Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2018. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2017 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-073, 113 Pages, 2021/03

JAEA-Review-2020-073.pdf:3.87MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory. This annual report describes the activities of our department in fiscal year of 2017. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2016 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-072, 102 Pages, 2021/03

JAEA-Review-2020-072.pdf:3.86MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2016. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

Journal Articles

Outline and implementation status of decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Nemoto, Tsutomu; Oyama, Koji

Dekomisshoningu Giho, (60), p.8 - 16, 2019/09

JRR-4 had been shifted to decommissioning phase in December 2017 after we received the approval of the decommissioning plan of JRR-4 on June 2017 and the approval of the change of the safety regulations related to it. Decommissioning works are divided two phases and proceeded according to its plan. In the first phase, we perform reactor shutdown, fuel removal and maintenance management, and in the second phase, the dismantling works. JRR-4 was initially installed for the purpose of shielding experiments of the nuclear ship Mutsu, reached its first criticality in 1965, and had been operated for about 45 years until Dec. 2010. However, in consideration of the expenses required for the new regulatory standards implemented after the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant accident and aging degradation, the decommissioning of JRR-4 was determined according to the JAEA reform plan in Sep. 2013. This report describes the outline of the decommissioning plan of JRR-4 and the status of its implementation.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2013 & 2014

Nuclear Science Research Institute

JAEA-Review 2018-036, 216 Pages, 2019/03

JAEA-Review-2018-036.pdf:19.22MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office, Fukushima Project Team and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2013 and 2014 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Research Center, Nuclear Science and Engineering Center and Quantum Beam Science Center, and activity of Nuclear Human Resource Development Center, using facilities of NSRI.

Journal Articles

Outline and implementation status of decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Nemoto, Tsutomu; Yamada, Yusuke; Oyama, Koji

Nihon Hozen Gakkai Dai-15-Kai Gakujutsu Koenkai Yoshishu, p.501 - 505, 2018/07

After operating until December 2010, JRR-4 was under periodical self-inspection for the next operation. After that, it suffered from the Great East Japan Earthquake on March 11, 2011. But it recovered almost a year later. However, we determined to decommission JRR-4 in September 2013. After that, we received the approval of the decommissioning plan of JRR-4 on June 7, 2017. And we received the approval of the change of the safety regulations related to it. Subsequently JRR-4 was shifted to decommission phase in December 2017. This report describes the outline of the decommissioning plan of JRR-4 and the implementation status.

Journal Articles

Decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Hirane, Nobuhiko; Kato, Tomoaki

Proceedings of European Research Reactor Conference 2018 (RRFM 2018) (Internet), 7 Pages, 2018/03

Japan Research Reactor No.4 (JRR-4) is a swimming pool type reactor moderated and cooled with light-water. The maximum thermal power of JRR-4 is 3,500kW. Since its initial criticality in January 1965, JRR-4 had been operated about 45 years until in December 2010.Subsequently, the Great East Japan Earthquake occurred on March 11, 2011. Although JRR-4 was no severe damage, we have determined to decommission JRR-4 in consideration of various things. After that, we have submitted the decommissioning plan of JRR-4 to the nuclear regulatory body and have received the approval of it on June 7, 2017. Consequently, JRR-4 has shifted to the phase1 of the decommissioning plan since December.15, 2017 after the approval of its the safety regulation.

Journal Articles

Decommissioning of JRR-4

Ishikuro, Yasuhiro; Wada, Shigeru

UTNL-R-0494, p.6_1 - 6_14, 2017/03

no abstracts in English

Journal Articles

Decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Hirane, Nobuhiko; Kato, Tomoaki

Proceedings of 8th International Symposium on Materials Testing Reactors (ISMTR-8) (Internet), 5 Pages, 2015/10

Japan Research Reactor No.4 (JRR-4) is a swimming pool type reactor moderated and cooled with light-water. The maximum thermal power of JRR-4 is 3,500 kW. Since its initial criticality in January 1965, JRR-4 had been operated about 45 years until in December 2010. Subsequently, the Great East Japan Earthquake occurred on March 11, 2011. Although JRR-4 was no severe damage, we have determined to decommission JRR-4 in consideration of various things, and will submit the decommissioning plan of JRR-4 to the nuclear regulatory body in the near future.

JAEA Reports

Characteristics measurement of JRR-4 neutron beam facility; Accuracy estimation of BNCT dose calculation after change of reflector

Horiguchi, Hironori; Nakamura, Takemi; Motohashi, Jun; Kashimura, Takanori; Ichimura, Shigeju; Sasajima, Fumio

JAEA-Technology 2012-003, 38 Pages, 2012/03

JAEA-Technology-2012-003.pdf:2.55MB

Clinical trials of boron neutron capture therapy (BNCT) for malignant brain tumors and head and neck cancers have been performed at the research reactor JRR-4. BNCT is a kind of radiation therapy using a nuclear reaction with thermal neutrons and boron ($$^{10}$$B) elements administered to a patient. The design specifications of all types of reflector elements were changed due to a trouble of a reflector element in JRR-4. In the production of the new reflector elements, they were designed with the influence for the neutron beam facility by the analytical calculation. After the installation of the new reflector elements, the performance of the neutron beam facility was verified by measurement such as a free air experiment and a water phantom experiment. The calculation error used in the treatment planning for BNCT can be estimated by comparing the results of our calculation with the corresponding experimental data.

Journal Articles

Investigation of irradiation conditions for recurrent breast cancer in JRR-4

Horiguchi, Hironori; Nakamura, Takemi; Kumada, Hiroaki*; Yanagie, Hironobu*; Suzuki, Minoru*; Sagawa, Hisashi

Proceedings of 14th International Congress on Neutron Capture Therapy (ICNCT-14) (CD-ROM), p.234 - 237, 2010/10

Recurrent breast cancer has been considered the application for boron neutron capture therapy using the JRR-4. The investigation of irradiation conditions for the recurrent breast cancer was performed by simulation with the JCDS. We performed the preliminary dosimetry of the model to verify the efficient irradiation conditions such as the neutron energy modes and multiple field technique. From the result, when the 30 Gy-Eq dose as minimum dose was delivered to the cancers, comparable dose distribution was delivered at the healthy tissues by both a one-port irradiation from anterior direction and a two-port irradiation from tangential direction. We revealed that the two-port irradiation was not valid to reduce the healthy tissues dose due to the isotopic scattering of neutrons in the body. We concluded that the optimal irradiation condition was the one-port irradiation with thermal neutron beam mode in terms of less healthy tissues dose and shorter irradiation time.

Journal Articles

Resumption of JRR-4 and characteristics of the neutron beam for BNCT

Nakamura, Takemi; Horiguchi, Hironori; Kishi, Toshiaki; Motohashi, Jun; Sasajima, Fumio; Kumada, Hiroaki*

Proceedings of 14th International Congress on Neutron Capture Therapy (ICNCT-14) (CD-ROM), p.379 - 382, 2010/10

The clinical trials of BNCT have been conducted using JRR-4. The JRR-4 stopped in January 2008, because the graphite reflector was considerably damaged. For this reason, the specifications of graphite reflectors were renewal. All existing graphite reflectors of JRR-4 were changed by new graphite reflectors. The resumption of JRR-4 was carried out with new graphite reflectors in February 2010. We measured the characteristics of neutron beam at the JRR-4 Neutron Beam Facility. A cylindrical water phantom was put the gap for 1cm from the beam port. TLD and gold wire were inserted within the phantom when the phantom was irradiated. The results of the measured thermal neutron flux and the $$gamma$$ dose in water were compared with MCNP calculations. The calculated results showed the same tendency with the experimental results. These results are proceeding well and will be reported in full paper at July 2010.

Journal Articles

Characteristics measurement of thermal neutron filter developed for improvement of therapeutic dose distribution of JRR-4

Kumada, Hiroaki*; Nakamura, Takemi; Horiguchi, Hironori; Matsumura, Akira*

Proceedings of 14th International Congress on Neutron Capture Therapy (ICNCT-14) (CD-ROM), p.414 - 417, 2010/10

Journal Articles

Influence of water concentrations to chemical forms of tritium generated in mercury through a nuclear reaction

Manabe, Kentaro; Yokoyama, Sumi

Applied Radiation and Isotopes, 68(3), p.418 - 421, 2010/03

 Times Cited Count:0 Percentile:0.01(Chemistry, Inorganic & Nuclear)

Influence of water content to chemical forms of tritium generated in mercury was evaluated for assessment of potential internal exposure in the Japan Spallation Neutron Source (JSNS) using a mercury target. In order to simulate the condition of tritium production in the mercury target, mercury samples containing a small amount of metallic lithium as a source of tritium and water were irradiated with a thermal neutron beam. It was found that the ratio of HTO to the sum of HTO and HT increased with the water content in the mercury samples.

148 (Records 1-20 displayed on this page)