Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 853

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Influence of clay-doped water on permeability in granite rock mass

Nara, Yoshitaka*; Kashiwaya, Koki*; Oketani, Kazuki*; Fujii, Hirokazu*; Zhao, Y.*; Kato, Masaji*; Aoyagi, Kazuhei; Ozaki, Yusuke; Matsui, Hiroya; Kono, Masanori*

Zairyo, 73(3), p.220 - 225, 2024/03

The fractures in the rock are the main pass of groundwater flow and solute transport. The filling of fine-grained particle, such as clay minerals, was confirmed to decrease the permeability of rock by laboratory experiment. This research aimed to verify the occurance of the phoenomena in the fild. The water containing the clay minerals was injected into the rock at the 200m stage of the Mizunami undearground research laboratory. The hydraulic conductivity decreased two order before and after the injection. This result suggested that the decrease of hydraulic conductivity by the filling of fine-grained particle in the fractures occured in the real field.

JAEA Reports

Results of groundwater pressure and hydro-chemical monitoring as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2022)

Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*

JAEA-Data/Code 2023-014, 118 Pages, 2024/02

JAEA-Data-Code-2023-014.pdf:4.77MB
JAEA-Data-Code-2023-014-appendix(CD-ROM).zip:249.03MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydro-chemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (MIU). This report summarizes the data of the groundwater pressure and hydro-chemical monitoring from boreholes and forth at and around the MIU conducted in FY2022. In addition, unreported hydro-chemical monitoring data from the boreholes and forth at the MIU conducted in FY2021 were also compiled.

JAEA Reports

Results of environmental impact investigations as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2022)

Takeuchi, Ryuji; Nishio, Kazuhisa*; Kokubu, Yoko

JAEA-Data/Code 2023-013, 74 Pages, 2024/01

JAEA-Data-Code-2023-013.pdf:4.2MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the environmental monitoring investigation to confirm the environmental impacts associated with the backfilling of shafts and tunnels at the Mizunami Underground Research Laboratory (MIU). This report summarizes the results of the environmental impact investigations conducted as part of the environmental monitoring investigation around the MIU Site in FY2022, which include groundwater level measurement in wells, river flow rate measurement, water analysis of Hazama river, noise and vibration surveys, and soil survey.

JAEA Reports

Report of backfilling and restoration works in the Mizunami Underground Research Laboratory

Takeuchi, Ryuji; Mikake, Shinichiro; Ikeda, Koki; Nishio, Kazuhisa*; Kokubu, Yoko; Hanamuro, Takahiro

JAEA-Review 2023-007, 114 Pages, 2023/07

JAEA-Review-2023-007.pdf:12.02MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center has been conducting the Mizunami Underground Research Laboratory (MIU) Project to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan since fiscal year 1996. Backfilling and restoration works in the MIU site have been being conducted based on "the MIU Project from FY2020 onwards" which is defined the way forward of backfilling and restoration works and environmental monitoring investigations in the MIU site, since fiscal year 2020. This report summarizes the outline, process, and achievements of the construction and the safety patrol of the backfilling and restoration works in the MIU site performed from May 16, 2020 to January 16, 2022.

Journal Articles

Proposition of confirmation items on the borehole sealing for the disposal of radioactive waste

Murakami, Hiroaki; Nishiyama, Nariaki; Takeuchi, Ryuji; Iwatsuki, Teruki

Oyo Chishitsu, 64(2), p.60 - 69, 2023/06

In order to confirm the quality control items for borehole closure in radioactive waste disposal projects, in-situ borehole sealing tests using bentonite material were conducted. As a result, the closure performance was successfully demonstrated by comparing the data of water injection tests conducted before and after the installation of the closure material. However, the breakthrough was observed after closing, probably due to high differential pressure applied to the seal section. Thus, it is important to ascertain throughout the entire operation that the borehole is adequately closed. The placement and specifications of the closure material should be determined according to the hydrogeological structure in the borehole. The confirmation items to use bentonite for sealing material are identified to be: to consider swelling and density loss in the borehole; to place the planned depth using appropriate emplacement technique; to be placed without damage to seals when use some backfilling materials, considering effect of permeability on adjacent seals.

JAEA Reports

Results of environmental impact investigations as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2020-2021)

Takeuchi, Ryuji; Nishio, Kazuhisa*; Hanamuro, Takahiro; Kokubu, Yoko

JAEA-Data/Code 2022-010, 110 Pages, 2023/03

JAEA-Data-Code-2022-010.pdf:6.2MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the environmental monitoring investigation to confirm the environmental impacts associated with the backfilling of shafts and tunnels at the Mizunami Underground Research Laboratory (MIU). This report summarizes the results of environmental impact investigations conducted as part of the environmental monitoring investigation around the MIU Site from FY2020 to FY2021, which include groundwater level measurement in wells, river flow rate measurement, water analysis of Hazama river, noise and vibration surveys, and soil survey.

Journal Articles

Isotopic signals in fracture-filling calcite showing anaerobic oxidation of methane in a granitic basement

Mizuno, Takashi; Suzuki, Yohei*; Milodowski, A. E.*; Iwatsuki, Teruki

Applied Geochemistry, 150, p.105571_1 - 105571_11, 2023/03

 Times Cited Count:1 Percentile:62.05(Geochemistry & Geophysics)

Anaerobic oxidation of methane (AOM) affects both the redox conditions and carbon cycle in groundwater. However, examples of studies on crystalline rock deep in terrestrial subsurface as well as the potential host rock for geological disposal are few. Therefore, we conducted a paleohydrogeological study on fracture-filling calcite in the Toki Granite. The $$delta$$$$^{18}$$O$$_{VPDB}$$ value (-32.7 to -0.59 permil) revealed that the groundwater that precipitated the calcite was groundwater derived from hydrothermal fluid, freshwater that came from the surface, and seawater that penetrated during marine transgression. On the other hand, $$delta$$$$^{13}$$C$$_{VPDB}$$ (-56.6 to 6.0 permil) was wider than the isotopic range of DIC that originated from hydrothermal, freshwater, and seawater sources (-25 to 2 permil). Calcite with $$delta$$$$^{13}$$C$$_{VPDB}$$ that was lighter than -25 permil was believed to have precipitated DIC, which was provided by AOM. In contrast to previous studies, the Mizunami AOM calcite was precipitated in a freshwater environment, indicating that various processes could have generated AOM in crystalline rocks deep in the terrestrial subsurface.

JAEA Reports

Results of groundwater pressure and hydro-chemical monitoring as part of environmental monitoring investigation in backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (2020-2021)

Takeuchi, Ryuji; Murakami, Hiroaki; Nishio, Kazuhisa*

JAEA-Data/Code 2022-008, 184 Pages, 2023/01

JAEA-Data-Code-2022-008.pdf:8.2MB
JAEA-Data-Code-2022-008-appendix1(DVD-ROM).zip:327.79MB
JAEA-Data-Code-2022-008-appendix2(DVD-ROM).zip:284.46MB

The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydro-chemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory. This report summarizes the results of the groundwater pressure and hydro-chemical monitoring conducted from FY2020 to FY2021.

Journal Articles

Study on investigation method of fracture distribution based on data obtained at the Mizunami Underground Research Laboratory, central Japan

Sasao, Eiji

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(2), p.112 - 118, 2022/12

Since fractures in granite act as pathways for groundwater flow and mass transport, understanding of fracture distribution is an important subject for the disposal of high-level nuclear waste. Fracture data obtained through the borehole investigation from ground surface contains errors due to the crossing angle between boreholes and fractures. I studied method of borehole investigation that can effectively characterize the fracture distribution based on fracture information obtained from geological investigation of shaft wall at the Mizunami Underground Research Laboratory. As a result, it was found that inclined boreholes captured larger number of fractures than vertical boreholes. Therefore, inclined boreholes are preferable for efficient characterization of the fractures. Fracture orientation at surface exposure is well concordant with that at the shaft, which implies that the drilling direction should be determined based on the result of surface fracture mapping.

JAEA Reports

Assessment report of research and development activities in FY2021; Activity of "Research and Development on Geological Disposal of High-level Radioactive Waste" (Post- and pre-review report)

Geological Disposal Research and Development Department

JAEA-Evaluation 2022-007, 81 Pages, 2022/11

JAEA-Evaluation-2022-007.pdf:2.06MB
JAEA-Evaluation-2022-007-appendix(CD-ROM).zip:37.06MB

Japan Atomic Energy Agency (JAEA) consulted the advisory committee, "Evaluation Committee on Research and Development (R&D) Activities for Geological Disposal of High-Level Radioactive Waste", for post- and pre-review assessment of R&D activities on high-level radioactive waste disposal in accordance with "General Guideline for the Evaluation of Government Research and Development (R&D) Activities" by the Cabinet Office, Government of Japan, "Guideline for Evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology" and JAEA's "Regulation on Conduct for Evaluation of R&D Activities". In response to JAEA's request, the Committee reviewed mainly the progress of the R&D project on geological disposal, the relevance of the project outcome and the efficiency of the project implementation during the period of the current and next plan. This report summarizes the results of the assessment by the Committee with the Committee report attached.

JAEA Reports

Demonstration of the groundwater observation network system in backfilled underground facility

Murakami, Hiroaki; Takeuchi, Ryuji; Iwatsuki, Teruki

JAEA-Technology 2022-022, 34 Pages, 2022/10

JAEA-Technology-2022-022.pdf:3.47MB

Japan Atomic Energy Agency (JAEA) has been conducting the hydro-pressure and hydrochemical monitoring for more than two decades to understand the hydrochemical disturbance due to the excavation of tunnels at Mizunami Underground Research Laboratory (MIU). To understand the environmental influence due to the backfilling of research tunnels that started in 2019, environmental monitoring of groundwater has been performed and recovery status of groundwater is being confirmed. In order to observe the deep-groundwater environment from the ground, the groundwater pressure monitoring and sampling, which have been performed in the research tunnel, are to be performed from the ground. However, backfilling of a large-scale underground facilities such as MIU is globally unprecedented, thus it was necessary to develop a new observation system. Accordingly, we developed a new observation network to observe the environment around the research tunnels of the MIU. This system enables monitoring of groundwater pressure and water sampling of the backfilled tunnel from the ground while utilizing the existing-monitoring system installed in the tunnels. Accordingly, we demonstrated its technology through the environmental monitoring of groundwater. The results of the environmental monitoring and the existing groundwater data of MIU indicate that this system is able to monitor the groundwater environment in the backfilled tunnels.

JAEA Reports

Final Debriefing Session on the Mizunami Underground Research Laboratory Project, February 9, 2022, Mizunami-shi, Gifu-ken, Japan

Nishio, Kazuhisa*; Hanamuro, Takahiro; Mikake, Shinichiro

JAEA-Review 2022-019, 42 Pages, 2022/08

JAEA-Review-2022-019.pdf:8.26MB

Research and development project, Mizunami Underground Research Laboratory (MIU) Project at the Tono Geoscience Center (TGC) of Japan Atomic Energy Agency (JAEA), has been performed since 1996 and ended in 2019 fiscal year. On January 14, 2022, construction work such as backfilling of the research tunnels of the MIU was also successfully completed. After the research results has been compiled, we decided to hold a final debriefing session to report the research results obtained from the project and the construction details such as backfilling of the tunnels. This report summarized the presentation materials used in "The Final Debriefing Session on the Mizunami Underground Research Laboratory Project" held on February 9, 2022.

Journal Articles

Precipitation sequence of fracture-filling calcite in fractured granite and changes in the fractionation process of rare earth elements and yttrium

Mizuno, Takashi; Milodowski, A. E.*; Iwatsuki, Teruki

Chemical Geology, 603, p.120880_1 - 120880_16, 2022/08

 Times Cited Count:3 Percentile:56.2(Geochemistry & Geophysics)

This study has focused on the formation sequence and Rare earth elements with yttrium (REY) of fracture-filling calcite in the Toki Granite in the Mizunami area, central Japan. The morphological, chemical and isotopic characteristics of the calcite and chemistry of fluid inclusions reveal that the calcite in the Toki Granite can be differentiated into four discrete generations: Calcite I (oldest) to Calcite IV (most recent). The precipitation history of calcite reflects the changes in the hydrogeochemical regime of paleo-groundwaters, controlled by the evolution of groundwater by seawater infiltration associated with marine transgression and surface water infiltration associated with marine regression and uplift. The post-Archean average shale-normalized REY patterns in generations of calcite show no significant Ce anomaly, negative Eu anomaly, and light REY (LREY)-depleted pattern in dominates. These features are also common to the Toki Granite. The consistency of the features in each generation of calcite indicates that REY was supplied from the Toki Granite by water-rock interaction. The lack of a Ce anomaly in the calcite demonstrates that groundwaters have maintained reducing conditions during the calcite precipitation. However, the fractionation of LREY and heavy REY (HREY) in each generation of the calcite is more pronounced than in the granite. The fractionation process in the paleo-groundwaters from which each generation of calcite precipitated closely relates to the systematic variation of carbonate complex in REY series and/or pH in palaeo-groundwater. The findings of this study will be necessary for assessing the long-term safety of geological disposal of high-level radioactive waste.

Journal Articles

Current status of geological disposal by "all-Japan" activities, 4; Repository design and engineering technology (2)

Motoshima, Takayuki*; Matsui, Hiroya; Kawakubo, Masahiro*; Kobayashi, Masato*; Ichimura, Tetsuhiro*; Sugita, Yutaka

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(3), p.163 - 167, 2022/03

no abstracts in English

Journal Articles

Association of hydrothermal plagioclase alteration with micropores in a granite; Petrographic indicators to evaluate the extent of hydrothermal alteration

Yuguchi, Takashi*; Izumino, Yuya*; Sasao, Eiji

Journal of Mineralogical and Petrological Sciences (Internet), 117(1), p.220415_1 - 220415_12, 2022/00

 Times Cited Count:0 Percentile:0.02(Mineralogy)

This study presents the use of petrographic plagioclase alteration indicators as a new method for quantitatively evaluating the extent of plagioclase alteration within granites, using the Toki granite, central Japan. Alteration indicators and areal fractions of microvoids in the plagioclases were obtained via BSE image analysis. The volume of the micropores in the altered plagioclase was characterized by the areal fraction of microvoids in the grains. The plagioclase alteration indicators were obtained as the ratio between the alteration product area and the original plagioclase area. In our previous study, we focused on biotite chloritization indicators. We found positive correlations between the plagioclase alteration and biotite chloritization indicators in the same sample, indicating that each alteration indicator can be used independently as a representative value for the sample. In the Toki granite, the plagioclase alteration was related to the biotite chloritization.

Journal Articles

Development of modeling methodology for hydrogeological heterogeneity of the deep fractured granite in Japan

Onoe, Hironori; Ishibashi, Masayuki*; Ozaki, Yusuke; Iwatsuki, Teruki

International Journal of Rock Mechanics and Mining Sciences, 144, p.104737_1 - 104737_14, 2021/08

 Times Cited Count:4 Percentile:34.69(Engineering, Geological)

In this study, we investigated the methodology of modeling for fractured granite around the drift at a depth of 500 m in the Mizunami Underground Laboratory, Japan as a case study. As a result, we developed the fracture modeling method to estimate not only geological parameters of fractures but also hydraulic parameters based on the reproducibility of trace length distribution of fractures. By applying this modeling method, it was possible to construct a Discrete Fracture Network (DFN) model that can accurately reproduce the statistical characteristics of fractures.

Journal Articles

Genesis and development processes of fractures in granite; Petrographic indicators of hydrothermal alteration

Yuguchi, Takashi*; Izumino, Yuya*; Sasao, Eiji

PLOS ONE (Internet), 16(5), p.e0251198_1 - e0251198_17, 2021/05

 Times Cited Count:3 Percentile:26.52(Multidisciplinary Sciences)

This study analyzes the relationships among alteration indicators, areal microvoid fractions in chloritized biotite, and macroscopic fracture frequencies in the Toki granite, central Japan, to establish the genesis and development processes of fractures in granite. Petrographic alteration indicators using biotite chloritization as innovative methods are proposed to evaluate the extent of hydrothermal alteration and fracture frequency within granites. Samples with high macroscopic fracture frequencies correspond to a high number of areal microvoid fractions and large alteration indicators. The alteration indicators contribute to the characterization of present and future distributions of macroscopic fracture frequencies.

Journal Articles

K-Ar geochronology for hydrothermal K-feldspar within plagioclase in a granitic pluton; Constraints on timing and thermal condition for hydrothermal alteration

Yuguchi, Takashi*; Yagi, Koshi*; Sasao, Eiji; Nishiyama, Tadao*

Heliyon (Internet), 7(4), p.e06750_1 - e06750_9, 2021/04

 Times Cited Count:1 Percentile:10.87(Multidisciplinary Sciences)

Our methodology and interpretations provide new insight for K-Ar geochronology in hydrothermal microcline within altered plagioclase in a granitic pluton. Our methodology employs a two-step separation process consisting of (1) plagioclase extraction from the rock sample and (2) separation of the hydrothermal microcline from the plagioclase, giving precise determination of microcline powders in K-Ar geochronology. This tighter constraint should provide the ability to better unravel thermal and age histories in granite subject to multi-step alteration processes and complex thermal histories.

JAEA Reports

Excavation of shafts and research galleries at the Mizunami Underground Research Laboratory (Construction work of MIU Part VIII); Construction progress report

Safety and Facility Management Section, Tono Geoscience Center

JAEA-Review 2020-052, 116 Pages, 2021/03

JAEA-Review-2020-052.pdf:12.81MB

This progress report presents an outline compilation of construction activities, primary tasks performed, construction progress and safety patrol report at the Mizunami Underground Research Laboratory Construction Work Part VIII. The outline of construction activities is a summary based on the scope of work planned the main activities are based on the Tono Geoscience Center weekly reports; and the construction progress is based on the planned and actual schedules. The actual performance of the construction work of MIU part VIII carried out from April 1, 2018 until May 15, 2020 is described in this report.

JAEA Reports

Data of radon measurement in underground facilities of Mizunami Underground Research Laboratory

Aoki, Katsunori; Yamanaka, Hiroki*; Watanabe, Kazuhiko*; Sugihara, Kozo

JAEA-Data/Code 2020-018, 45 Pages, 2021/02

JAEA-Data-Code-2020-018.pdf:4.54MB
JAEA-Data-Code-2020-018-appendix(DVD-ROM).zip:6.8MB

Mizunami Underground Research Laboratory (MIU) Project is pursued by Japan Atomic Energy Agency (JAEA) in the crystalline host rock (granite) as a part of geoscientific study of JAEA, and underground facilities of MIU are constructed down to 500m blow the ground surface. As small amount of Uranium is normally contained in granite, high concentration of radon is sometimes detected in the air of the underground facilities constructed in granitic rocks depending on their ventilation conditions. Radon concentrations in underground facilities of MIU have been measured according to the excavation progress of underground facilities or the change of ventilation system. It is recognized that the data obtained by the actual measurement of radon concentration in such underground facilities are rare and valuable. This repot summarizes the measured data from fiscal 2010 to fiscal 2020, together with the information of ventilation conditions and air temperature which affect radon concentrations in underground facilities. The variation of the equilibrium factors of radon is also examined with the actually measured data. As a result, it has been found that radon concentration in the drift is high in summer and low in winter according to the natural ventilation caused by the seasonal temperature difference between in and out of the underground facilities. Furthermore, the temporary increase in the equilibrium factor of radon in the drift at the start of ventilation is supposed to be due to the aerosol increase by the ventilation flow, such as the dust blown up.

853 (Records 1-20 displayed on this page)