Refine your search:     
Report No.
 - 
Search Results: Records 1-17 displayed on this page of 17
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analytical data on contaminated water, rubble and other collected at the Fukushima Daiichi Nuclear Power Station

Asami, Makoto*; Takahatake, Yoko; Myodo, Masato; Tobita, Takeshi; Kobayashi, Kiwami; Hayakawa, Misa; Usui, Yuka; Watahiki, Hiromi; Shibata, Atsuhiro; Nomura, Kazunori; et al.

JAEA-Data/Code 2017-001, 78 Pages, 2017/03

JAEA-Data-Code-2017-001.pdf:4.92MB
JAEA-Data-Code-2017-001-appendix(DVD-ROM).zip:818.06MB

At Fukushima Daiichi Nuclear Power Station owned by Tokyo Electric Power Company Holdings, Incorporated (TEPCO), contaminated water (accumulated, treated) secondary waste from water treatment, rubble and soil were collected and analyzed. The data already opened to public was collected as this report. The analytical data reported by TEPCO, Japan Atomic Energy Agency and International Research Institute for Nuclear Decommissioning until the end of March, 2016, was collected. Information on the samples and values of radioactive nuclide concentration and others were tabulated, besides figures, which show change in radioactive nuclide concentration for major nuclides, are contained. And, English translation and the collected data are provided as electric data.

JAEA Reports

Development of fuel temperature calculation code "FTCC" for high temperature gas-cooled reactors

Inaba, Yoshitomo; Isaka, Kazuyoshi; Shibata, Taiju

JAEA-Data/Code 2017-002, 74 Pages, 2017/03

JAEA-Data-Code-2017-002.pdf:2.36MB

In order to ensure the thermal integrity of fuel in High Temperature Gas-cooled Reactors (HTGRs), it is necessary that the maximum fuel temperature in normal operation is to be lower than a thermal design target. In the core thermal-hydraulic design of block-type HTGRs, the maximum fuel temperature should be evaluated considering data such as core geometry and specifications, power density and neutron fluence distributions, and core coolant flow distribution. The fuel temperature calculation code used in the design stage of the High Temperature engineering Test Reactor (HTTR) presupposes to run on UNIX systems, and its operation and execution procedure are complicated and are not user-friendly. Therefore, a new fuel temperature calculation code, named FTCC, which has a user-friendly system such as a simple and easy operation and execution procedure, was developed. This report describes the calculation objects and models, the basic equations, the strong points (improvement points from the HTTR design code), the code structure, the using method of FTCC, and the result of a validation calculation with FTCC. The calculation result obtained by FTCC provides good agreement with that of the HTTR design code, and then FTCC will be used as one of the design codes for high temperature gas-cooled reactors. In addition, the effect of hot spot factors and fuel cooling forms on reducing the maximum fuel temperature is investigated with FTCC. As a result, it was found that the effect of center hole cooling for hollow fuel compacts and gapless cooling with monolithic type fuel rods on reducing the temperature is very high.

JAEA Reports

Monitoring of groundwater inflow into research galleries in the Mizunami Underground Research Laboratory Project (MIU Project); From fiscal year 2014 to 2015

Ueno, Tetsuro; Takeuchi, Ryuji

JAEA-Data/Code 2017-003, 46 Pages, 2017/03

JAEA-Data-Code-2017-003.pdf:5.89MB
JAEA-Data-Code-2017-003-appendix(CD-ROM).zip:2.66MB

Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction Phase (Phase II), and Operation phase (Phase III). As for The MIU Project (Phase II) was carried out from 2004 fiscal year, and has been started the Phase III in 2010 fiscal year. The groundwater inflow monitoring into shafts and research galleries, has been maintained to achieve the Phase II goals, begins in 2004 fiscal year and follow now. This document presents the results of the groundwater inflow monitoring from fiscal year 2014 to 2015.

JAEA Reports

Case studies of radiation dose assessment in emergency situation of nuclear facilities

Kawasaki, Masatsugu; Nakajima, Junya; Yoshida, Keisuke; Kato, Saori; Nishino, Sho; Nozaki, Teo; Nakagawa, Masahiro; Tsunoda, Junichi; Sugaya, Yuki; Hasegawa, Rie; et al.

JAEA-Data/Code 2017-004, 57 Pages, 2017/03

JAEA-Data-Code-2017-004.pdf:2.34MB

In emergency situation of nuclear facilities, we need to estimate the radiation dose due to radiation and radioactivity to grasp the influence range of the accident in the early stage. Therefore, we prepare the case studies of dose assessment for public exposure dose and personal exposure dose and contribute them to emergency procedures. This document covers about accidents of nuclear facilities in Nuclear Science Research Institute and past accident of nuclear power plant, and it can be used for inheritance of techniques of emergency dose assessment.

JAEA Reports

Data of geophysical logging based on the deep borehole investigations in the Horonobe Underground Research Laboratory Project (Phase I)

Miyara, Nobukatsu; Matsuoka, Toshiyuki

JAEA-Data/Code 2017-005, 34 Pages, 2017/03

JAEA-Data-Code-2017-005.pdf:5.12MB
JAEA-Data-Code-2017-005-appendix(CD-ROM).zip:27.66MB

Japan Atomic Energy Agency (JAEA) is performing the Horonobe Underground Research Laboratory Project, which includes a scientific study of the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes (HLW), in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the sedimentary rock. This report integrates geophysical logging data obtained from the deep borehole investigations (HDB-1 $$sim$$ HDB-11) conducted in the Horonobe Underground Research Laboratory Project (Phase I).

JAEA Reports

Compilation of the data book on light water reactor benchmark to develop the next version of JENDL; Utilization of criticality data in ICSBEP and IRPhEP open databases

Reactor Integral Test Working Group, JENDL Committee

JAEA-Data/Code 2017-006, 152 Pages, 2017/05

JAEA-Data-Code-2017-006.pdf:13.46MB
JAEA-Data-Code-2017-006(errata).pdf:0.07MB
JAEA-Data-Code-2017-006-appendix1(CD-ROM).zip:115.88MB
JAEA-Data-Code-2017-006-appendix2(CD-ROM).zip:110.88MB

A benchmark database which is devoted to the evaluation of the future JENDL against the criticality of light water reactors was prepared, where the ICSBEP and IRPhEP handbooks by OECD/NEA were utilized effectively. Specific features of this report can be described as follows: (1) The recommendation for benchmarking is based on careful reviewing for the document and related information. Validity of the original benchmark evaluation is carefully checked, and numerical results obtained with JENDL-4.0 are considered. (2) Heterogeneity effect of PuO$$_{2}$$ particles dispersed in fuel medium is consistently quantified for the MOX fuel-loaded experimental data. This precise evaluation is realized by the newly developed finite fuel pin bundle model with the Monte Carlo neutron transport code. (3) Sensitivity analysis is conducted in order to specify nuclear data whose difference between recent nuclear data libraries significantly affects the critical parameter calculation.

JAEA Reports

Integral benchmark test of JENDL-4.0 for U-233 systems with ICSBEP Handbook

Kuwagaki, Kazuki*; Nagaya, Yasunobu

JAEA-Data/Code 2017-007, 27 Pages, 2017/03

JAEA-Data-Code-2017-007.pdf:4.77MB
JAEA-Data-Code-2017-007-appendix(CD-ROM).zip:0.37MB

The integral benchmark test of JENDL-4.0 for U-233 systems using the continuous-energy Monte Carlo code MVP was conducted. The previous benchmark test was performed only for U-233 thermal solution and fast metallic systems in the ICSBEP handbook. In this study, MVP input files were prepared for uninvestigated benchmark problems in the handbook including compound thermal systems (mainly lattice systems) and integral benchmark test was performed. The prediction accuracy of JENDL-4.0 was evaluated for effective multiplication factors ($$k_mathrm{eff}$$'s) of the U-233 systems. As a result, a trend of underestimation was observed for all the categories of U-233 systems. In the benchmark test of ENDF/B-VII.1 for U-233 systems with the ICSBEP handbook, it is reported that a decreasing trend of calculated $$k_mathrm{eff}$$ values in association with a parameter ATFF (Above-Thermal Fission Fraction) is observed. The ATFF values were also calculated in this benchmark test of JENDL-4.0 and the same trend as ENDF/B-VII.1 was observed.

JAEA Reports

Hydrochemical investigation at the Mizunami Underground Research Laboratory; Compilation of groundwater chemistry data in the Mizunami group and the Toki granite (fiscal year 2015)

Hayashida, Kazuki; Kato, Toshihiro; Munemoto, Takashi; Aosai, Daisuke*; Inui, Michiharu*; Kubota, Mitsuru; Iwatsuki, Teruki

JAEA-Data/Code 2017-008, 52 Pages, 2017/03

JAEA-Data-Code-2017-008.pdf:3.84MB

Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2015. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described.

JAEA Reports

Geological and topographical data concerning normal faults (Kawaminami Fault) in the northern Miyazaki Plain, Southern Kyushu, Japan

Niwa, Masakazu; Kurosawa, Hideki*; Kosaka, Hideki*; Ikuta, Masafumi*; Takatori, Ryoichi*

JAEA-Data/Code 2017-009, 71 Pages, 2017/06

JAEA-Data-Code-2017-009.pdf:13.8MB
JAEA-Data-Code-2017-009-appendix(CD-ROM).zip:50.09MB

Changes of stress state due to the 2011 off the Pacific Coast of Tohoku Earthquake triggered normal displacements of faults that have not been regarded as active faults. In this study, geological survey for normal faults in coastal region was conducted in order to understand the mechanism of reactivation of inactive faults triggered by megathrust earthquakes. This report includes topographical and geological data obtained by field works in and around the Kawaminami Fault in northern margin of the Miyazaki Plain, with results of microscopic examination, analyses of X-ray diffraction and particle size distribution for clayey samples, analyses of tephra and plant opal, and radiocarbon dating.

JAEA Reports

Groundwater pressure records by geochemical monitoring system in the Horonobe Underground Research Laboratory

Mezawa, Tetsuya; Mochizuki, Akihito; Miyakawa, Kazuya; Sasamoto, Hiroshi

JAEA-Data/Code 2017-010, 63 Pages, 2017/06

JAEA-Data-Code-2017-010.pdf:9.66MB
JAEA-Data-Code-2017-010-appendix(CD-ROM).zip:5.08MB

Japan Atomic Energy Agency (JAEA) has been conducting "geoscientific study" and "research and development on geological disposal" in the Horonobe Underground Research Laboratory (URL) for safe geological disposal of high-level radioactive waste. Geochemical parameters of groundwater pressure, pH, and oxidation-reduction potential in the deep groundwater has been continuously monitored by the monitoring system which was developed in the Horonobe URL Project. This report presents the data of groundwater pressure which have been obtained by the monitoring system installed at the 140 m and 350 m gallery. The data obtained until March 31, 2016 was summarized along with related information such as the specifications of boreholes and the excavation of the URL.

JAEA Reports

Design database of helium gas turbine for HTTR-GT/H$$_{2}$$ test plant (Revised version)

Imai, Yoshiyuki; Sato, Hiroyuki; Yan, X.

JAEA-Data/Code 2017-011, 39 Pages, 2017/08

JAEA-Data-Code-2017-011.pdf:2.93MB

This report is the revised version of the report titled "Design Database of Helium Gas Turbine for High Temperature Gas-cooled Reactor, JAEA-Data/Code 2016-007" reflecting component design and experimental data analysis results for fission product isotope diffusion through the turbine blade alloy conducted in Fiscal Year 2016.

JAEA Reports

Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2014-2016)

Miyakawa, Kazuya; Mezawa, Tetsuya; Mochizuki, Akihito; Sasamoto, Hiroshi

JAEA-Data/Code 2017-012, 60 Pages, 2017/10

JAEA-Data-Code-2017-012.pdf:7.94MB
JAEA-Data-Code-2017-012-appendix(CD-ROM).zip:0.09MB

Development of technologies to investigate properties of deep geological environment and model development of geological environment have been pursued in "Geoscientific Research" in the Horonobe Underground Research Laboratory (Horonobe URL) project. A geochemical model which is a part of geological environment model requires the data of groundwater chemistry around the Horonobe URL for the development. This report summarizes the data obtained for 3 years from the fiscal year 2014 to 2016, especially for the results for measurement of physico-chemical parameters and analysis of groundwater chemistry, in the Horonobe URL project.

JAEA Reports

Development of a calculation method for atmospheric dispersion database that can immediately provide calculation results for any source term and period from hindcast to short-term forecast (Joint research)

Terada, Hiroaki; Tsuzuki, Katsunori; Kadowaki, Masanao; Nagai, Haruyasu; Tanaka, Atsunori*

JAEA-Data/Code 2017-013, 31 Pages, 2018/01

JAEA-Data-Code-2017-013.pdf:9.52MB

We developed an atmospheric dispersion calculation method that can respond to various needs for dispersion prediction in nuclear emergency and prepare database of information useful for planning of emergency response. In this method, it is possible to immediately get the prediction results for provided source term by creating a database of dispersion calculation results without specifying radionuclides, release rate and period except release point. By performing this calculation steadily along with meteorological data update, it is possible to immediately get calculation results for any source term and period from hindcast to short-term forecast. This function can be used for pre-accident planning such as optimization of monitoring plan and understanding events to be supposed for emergency response. Spatiotemporal distribution of radioactive materials reproduced by source term estimated inversely from monitoring based on this method is useful as a supplement to monitoring.

JAEA Reports

Investigation and evaluation of sorption and diffusion data for sedimentary rocks and cementitious materials (Report on NUMO-JAEA collaborative research in FY2016-2017) (Joint research)

Hamamoto, Takafumi*; Matsubara, Ryuta*; Shibutani, Sanae*; Suyama, Tadahiro*; Tachi, Yukio

JAEA-Data/Code 2017-014, 31 Pages, 2018/03

JAEA-Data-Code-2017-014.pdf:2.1MB
JAEA-Data-Code-2017-014-appendix(CD-ROM).zip:0.61MB

NUMO and JAEA have developed the methodology of post-closure safety assessment for the geological disposal. For this purpose, NUMO and JAEA have conducted a collaborative research project for developing the safety assessment methodology based on international state of the art knowledge. The present report focuses on investigation of sorption and diffusion data reported and their QA evaluation for updating sorption and diffusion database (SDB and DDB) as the collaborative research project between NUMO and JAEA. This report includes sorption and diffusion data for mainly sedimentary rocks and cement materials. As a result, 1,746 sorption data from 19 references and 593 diffusion data from 25 references were extracted and prepared in the datasheet of SDB and DDB.

JAEA Reports

User's manual and analysis methodology of probabilistic fracture mechanics analysis code PASCAL Ver.4 for reactor pressure vessel (Contract research)

Katsuyama, Jinya; Masaki, Koichi; Miyamoto, Yuhei*; Li, Y.

JAEA-Data/Code 2017-015, 229 Pages, 2018/03

JAEA-Data-Code-2017-015.pdf:5.8MB
JAEA-Data-Code-2017-015(errata).pdf:0.15MB

As a part of the structural integrity research for aging light water reactor components, a probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed in JAEA. The PASCAL code can evaluate the conditional failure probabilities and failure frequencies for core region in reactor pressure vessels under the pressurized thermal shock events. In this study, we improved many functions such as the stress intensity factor solutions, the fracture toughness models, or confidence level evaluation function by considering epistemic and aleatory uncertainties related to influence parameters in the structural integrity assessment. We also developed the analysis module PASCAL-Manager which calculates the failure frequency for the entire core region taking into consideration the failure probabilities obtained from PACAL-RV. Based on these improvements, the new analysis code is upgraded to PASCAL Ver.4. This report provides the user's manual and theoretical background of PASCAL Ver.4.

JAEA Reports

Development of JAEA sorption database (JAEA-SDB); Update of sorption/QA data in FY2017

Sugiura, Yuki; Suyama, Tadahiro*; Tachi, Yukio

JAEA-Data/Code 2017-016, 54 Pages, 2018/03

JAEA-Data-Code-2017-016.pdf:2.06MB

Sorption and diffusion of radionuclides in buffer materials (bentonites), rocks and cementitious materials are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in these barrier materials is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop databases compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). The present report focuses on updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K$$_{d}$$ setting and mechanistic sorption model development. This includes an overview of database structure and contents. K$$_{d}$$ data and their QA results are updated by focusing our recent activities on the K$$_{d}$$ setting and mechanistic model development. As a result, 4,256 K$$_{d}$$ data from 30 references were added, total number of K$$_{d}$$ values in the JAEA-SDB reached about 63,000. The QA/classified K$$_{d}$$ data reached about 69% for all K$$_{d}$$ data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to have suitable access to the respective data for PA-related K$$_{d}$$ setting in effective, traceable and transparent manner.

JAEA Reports

Database of granite crack in northwestern Tsuruga Peninsula

Terusawa, Shuji; Shimada, Koji

JAEA-Data/Code 2017-017, 18 Pages, 2018/03

JAEA-Data-Code-2017-017.pdf:5.14MB
JAEA-Data-Code-2017-017-appendix(CD-ROM).zip:0.44MB

Cracks (joints, fracture zones, etc.) are formed in granite by various mechanisms. Faulting uses these pre-existing cracks as weak plane. In addition, there may be directionality in the direction of the crack, producing a linear valley. Attempts are also being made to estimate a regional stress field from the direction of excellence. In this paper, we developed a database of cracks in granite by compiling 5050 points of strike-dip data, as part of the geologic surveys of the Monju fast-breeder reactor located in the northwestern part of the Tsuruga Peninsula. The strike-dip is predominantly northern northeast to northeast strike and high angle east dip, but shows different characteristics for each place. Therefore, further analysis using this database is desired.

17 (Records 1-17 displayed on this page)
  • 1