Refine your search:     
Report No.
 - 
Search Results: Records 1-80 displayed on this page of 80
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report for FY2020 on the activities of Department of Decommissioning and Waste Management (April 1, 2020 - March 31, 2021)

Department of Decommissioning and Waste Management

JAEA-Review 2022-001, 112 Pages, 2022/06

JAEA-Review-2022-001.pdf:6.51MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2020 to March 31, 2021. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2020 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 267 m$$^{3}$$ of combustible solid wastes and 233 m$$^{3}$$ of noncombustible solid wastes and 78 m$$^{3}$$ of liquid wastes. After adequate treatment, 1,448 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 130,604 as of the end of FY2020 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF), the Liquid Waste Treatment Facilities, the Compaction Facilities, and Fusion Neutronics Source (FNS) facilities. As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Station. The monitoring work at the playground was conducted during this period.

JAEA Reports

Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-002, 85 Pages, 2022/06

JAEA-Review-2022-002.pdf:3.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis" conducted in FY2020. In this work, in order to ensure the long-term reliability of steel structures that ensure important confinement functions in the debris removal process, such as existing PCVs and newly constructed negative pressure maintenance systems and piping, corrosion phenomena in wet environments where $$alpha$$- and $$beta$$-ray emitting nuclides come into contact with steel are clarified for the first time.

JAEA Reports

Fluorination method for classification of the waste generated by fuel debris removal (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*

JAEA-Review 2022-003, 126 Pages, 2022/06

JAEA-Review-2022-003.pdf:8.01MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination Method for Classification of the Waste Generated by Fuel Debris Removal" conducted in FY2020.

JAEA Reports

Survey on the planning process for waste characterization with statistical methods; Data quality objectives process

Murakami, Masashi; Sasaki, Toshiki

JAEA-Review 2022-004, 106 Pages, 2022/06

JAEA-Review-2022-004.pdf:3.95MB

A numerous analytical data will be required for the characterization of the radioactive waste stored in Japan Atomic Energy Agency toward their processing and disposal. A "Data Quality Objectives (DQO) Process" is widely applied as a tool for the development of a cost-effective characterization plan in the overseas nuclear sites. The DQO Process is a multi-step planning process developed by the United States Environmental Protection Agency (EPA), and can be used for the planning of a scientifically rigorous and cost-effective data collection program for the various projects involving the collection of the environmental data. We have considered to reduce the cost required for the future characterization of the stored waste by applying the statistical methods and have performed a literature survey on the DQO Process. The survey effort was focused on the guidance documents of the DQO Process published by the EPA and was also spent for the related matters such as a quality system of the EPA and the activities beyond the DQO Process as well as the examples of the application at the nuclear sites. In this report, the details on the planning procedure using the DQO Process are reviewed together with the background information such as why DQO Process was developed, what kind of transition was occurred, and how it is currently used in the EPA. The examples on the application for various objects at Hanford Site in the United States, where has the various legacy waste generated in the past activities and has the big environmental problems, are also reviewed. This report summarizes the important matters and methodology on the planning with the statistical sampling methods. It also provides the examples of the approaches for the complex objects, and will therefore be helpful in the future planning for the various kind of the waste characterization.

JAEA Reports

Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-005, 93 Pages, 2022/06

JAEA-Review-2022-005.pdf:6.95MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions" conducted in FY2020. In the project, radiochemists, nuclear chemists, nuclear physicists, material scientists, and environmental biologists are teamed to elucidate the mechanism of the degradation of fuel debris by combined effects of radiological, chemical, and biological functions. In fiscal year 2020, the members of the project team have conducted on the degradation of He ions irradiated simulated fuel debris, complex formation of tetravalent elements, uranium (VI) detection in microchannel, sorption of trivalent elements by iron bearing materials, and microbial degradation by model microorganisms …

JAEA Reports

History of Tono Mine traced by literature

Sugihara, Kozo

JAEA-Review 2022-006, 74 Pages, 2022/05

JAEA-Review-2022-006.pdf:7.09MB

As a trial to show the history of Tono Mine, this report summarizes the abstracts of literature, which is hit in the JAEA Originated Papers Searching System (JOPSS) referred with a word of "Tono Mine", in time order. 214 JAEA Reports, 54 papers and 9 oral presentations have been hit with free-word search using a word of "Tono Mine" in the JOPSS on February 1st, 2022. This report summarizes the abstracts of JAEA Reports mainly, as JAEA Reports are prepared in each activity in the mine. However there are few JAEA Reports of uranium exploration, some reports can be found out in the JOPSS and describe the history of uranium exploration activities in and around the Tono Mine. Histories of the Power Reactor and Nuclear Fuel Development Corporation also contain some descriptions and chronological tables relating to the Tono Mine. The extracts of these reports and histories are shown in this report as the history of Tono Mine during the time of uranium exploration.

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-007, 59 Pages, 2022/06

JAEA-Review-2022-007.pdf:2.09MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Identification of altered phases of fuel debris by laser fluorescence spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to identify alteration phases occurring on the surface fuel debris at various conditions, using time-resolved laser fluorescence spectroscopy (TRLFS), which is a selective analytical technique for U(VI), a major constituent of fuel debris and stable in oxidizing conditions.

JAEA Reports

Development of the sintering solidification method for spent zeolite to long-term stabilization (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2022-008, 116 Pages, 2022/06

JAEA-Review-2022-008.pdf:5.36MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the sintering solidification method for spent zeolite to long-term stabilization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a new sintering solidification method in which glass is added as a binder to spent zeolite which is adsorbed radionuclides such as Cs and the nuclides are immobilized by sintering them. In this project, the optimum conditions for sintering solidification and the basic performance of the sintered solidified body will be evaluated by cold tests, and they will be demonstrated by hot tests.

JAEA Reports

Basic research on the stability of fuel debris including alloy phase (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-009, 73 Pages, 2022/06

JAEA-Review-2022-009.pdf:2.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic research on the stability of fuel debris including alloy phase" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study focus on fuel debris consisting of oxide phase and alloy phase generated by the high temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO$$_{2}$$-SUS system and UO$$_{2}$$-Zr(ZrO$$_{2}$$)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water.

JAEA Reports

Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-010, 155 Pages, 2022/06

JAEA-Review-2022-010.pdf:9.78MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles during fuel debris retrieval in Fukushima Daiichi Nuclear Power Station, TEPCO. As measures to prevent dispersion of microparticles, (1) a method to suppress the dispersion with minimum amount of water utilizing water spray etc., and (2) a method to suppress the dispersion by solidifying ...

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2022-011, 80 Pages, 2022/07

JAEA-Review-2022-011.pdf:5.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to research and develop semi-autonomous mobile robot systems (multi-sensor fusion system, semantic simultaneous localization and mapping (SLAM), system for traversable-route learning and safe traversable-route presentation, etc.) that simply, safely, and rapidly make semantic survey maps …

JAEA Reports

Report on false alarms with automatic fire alarm in JAEA; Examination for false alarms reduction

Sakashita, Satoshi; Okui, Masahiro; Yoshida, Tadayoshi; Uezu, Yasuhiro; Okuda, Eiichi

JAEA-Review 2022-012, 42 Pages, 2022/06

JAEA-Review-2022-012.pdf:2.96MB

In this report, results of investigating fire alarm detectors status in order to understand the actual situation of false alarm occurrence and measures to systematically update of them. Based on results of this investigation, measures to systematically update of detectors were taken in order to reduce false fire alarm reports in a harsh environment and aged detectors. Numbers of detectors, false alarms were investigated. Furthermore, causes of their occurrence were investigated for three years (2018-2020). As a result of this investigation, it was found that most of the 34,400 fire alarm detectors in JAEA have been used for more than 20 years. In the last 3 years, 65 false alarms have been reported, 60% of which were found to have been used where the environment should be improved. It was also found that there are many cases where false alarms are reported from a detector within 14 years after installation. Based on the above, three basic policies were formulated. First of all, database will be built for fire alarm maintenance and inspection, secondly, installation location of fire alarm will be improved, and finally, detectors will be updated with reference to the manufacture's plan. According to the three basic policies, it is considered that the reports of false fire alarms will be able to reduced.

JAEA Reports

Environmental performance data in "Environmental report 2021"

Safety and Environmental Management Section, Safety and Nuclear Security Administration Department

JAEA-Review 2022-013, 210 Pages, 2022/07

JAEA-Review-2022-013.pdf:6.68MB

In September, 2021 Japan Atomic Energy Agency (JAEA) published the Environmental Report 2021 concerning the activities of FY 2020 under "Law Concerning the Promotion of Business Activities with Environmental Consideration by Specified Corporations, etc., by Facilitating Access to Environmental Information, and Other Measures". This report has been edited to show detailed environmental performance data in FY 2020 as the base of the Environmental Report 2021. This report would not only ensure traceability of the data in order to enhance the reliability of the environmental report, but also make useful measures for promoting activities of environmental considerations in JAEA.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-014, 106 Pages, 2022/08

JAEA-Review-2022-014.pdf:10.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station.

JAEA Reports

Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-015, 119 Pages, 2022/09

JAEA-Review-2022-015.pdf:6.62MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. Although laser processing has various advantages, one well-known disadvantage is that it generates a large amount of microparticles during the processing. Therefore, the application of laser processing to decommissioning waste contaminated with radioactive materials has been hesitant because the mechanism generating the microparticles has not been fully understood.

JAEA Reports

Document collection of the Special Committee on HTTR Heat Application Test

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Review 2022-016, 193 Pages, 2022/08

JAEA-Review-2022-016.pdf:42.06MB

Aiming to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR), Japan Atomic Energy Agency (JAEA) is planning a HTTR heat application test producing hydrogen with High Temperature Engineering Test Reactor (HTTR) achieved 950$$^{circ}$$C of the highest reactor outlet coolant temperature in the world. In the HTTR heat application test, it is required to establish its safety design realizing highly safe connection of a HTGR and a hydrogen production plant by the Nuclear Regulation Authority to obtain the permission of changes to reactor installation. However, installation of a system connecting the hydrogen production plant and a nuclear reactor, and its safety design has not been conducted so far in conventional nuclear power plant including HTTR in the world. A special committee on the HTTR heat application test, established under the HTGR Research and Development Center, considered a safety design philosophy for the HTTR heat application test based on an authorized safety design of HTTR in terms of conformity to the New Regulatory Requirements taking into account new considerable events as a result of the plant modification and connection of the hydrogen production plant. This report provides materials of the special committee such as technical reports, comments provided from committee members, response from JAEA for the comments and minutes of the committee.

JAEA Reports

Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2022-017, 56 Pages, 2022/08

JAEA-Review-2022-017.pdf:6.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs" conducted in FY2020. This research is developing a radiation-hardened optoelectronic FPGA with a 1 Grad total-ionizing-dose tolerance on which optical technologies are introduced onto a semiconductor technology and a radiation hardened FPGA with a 200 Mrad total-ionizing-dose tolerance not using any optical component. Moreover, Japanese research group will support hardware acceleration on FPGAs used for neutron-detection system developed by UK team.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2020)

Department of HTTR

JAEA-Review 2022-018, 90 Pages, 2022/09

JAEA-Review-2022-018.pdf:2.85MB

The High Temperature Engineering Test Reactor (HTTR) is the first High Temperature Gas-cooled Reactor (HTGR) constructed in Japan at the Oarai Research and Development Institute of the Japan Atomic Energy Agency with 30MW in thermal power and 950$$^{circ}$$C of maximum outlet coolant temperature. The purpose of the HTTR is establishment of basic HTGR technologies, demonstration of HTGR safety characteristics and so on. The HTTR has had a lot of experience of HTGRs' operation and maintenance throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2020, we continued to make effort to restart of the HTTR that stopped since the 2011 off the Pacific coast of Tohoku Earthquake. On 3rd June 2020, we obtained permission to the New Regulatory Requirements which make great progress toward the restart of the HTTR. This report summarizes the activities carried out in the fiscal year 2020, which were the situation of the New Regulatory Requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

JAEA Reports

Final Debriefing Session on the Mizunami Underground Research Laboratory Project, February 9, 2022, Mizunami-shi, Gifu-ken, Japan

Nishio, Kazuhisa*; Hanamuro, Takahiro; Mikake, Shinichiro

JAEA-Review 2022-019, 42 Pages, 2022/08

JAEA-Review-2022-019.pdf:8.26MB

Research and development project, Mizunami Underground Research Laboratory (MIU) Project at the Tono Geoscience Center (TGC) of Japan Atomic Energy Agency (JAEA), has been performed since 1996 and ended in 2019 fiscal year. On January 14, 2022, construction work such as backfilling of the research tunnels of the MIU was also successfully completed. After the research results has been compiled, we decided to hold a final debriefing session to report the research results obtained from the project and the construction details such as backfilling of the tunnels. This report summarized the presentation materials used in "The Final Debriefing Session on the Mizunami Underground Research Laboratory Project" held on February 9, 2022.

JAEA Reports

Research on factor analysis and technical process for achieving denuclearization; Denuclearization of Iraq

Tazaki, Makiko; Kimura, Takashi; Shimizu, Ryo; Tamai, Hiroshi; Nakatani, Takayoshi; Suda, Kazunori

JAEA-Review 2022-020, 82 Pages, 2022/09

JAEA-Review-2022-020.pdf:2.14MB

As part of the "Research on Factor Analysis and Technical Processes for Achieving Denuclearization" started in 2018, comprehensive survey of nuclear development and denuclearization of Iraq was conducted, together with analysis of the characteristics and lessons learned from the denuclearization. Iraq's clandestine nuclear weapon related activities were initially focused on plutonium production, but it then switched its focus on producing highly enriched uranium, and built various facilities, including electromagnetic isotope separation (EMIS) and centrifuge uranium enrichment facilities. Denuclearization of Iraq began with the defeat in the 1991 Gulf War, which forced Iraq to accept United Nations Security Council Resolution 687 (1991) that year. The Resolution set out a framework for destruction, removal, or rendering harmless of Iraq's weapons of mass destruction (WMD) programs. Within the framework, the International Atomic Energy Agency (IAEA), with the support and cooperation of the newly established United Nations Special Commission (UNSCOM), had verified Iraq's past nuclear activities and denuclearization. Characteristics of Iraq's denuclearization include that 1) Iraq had no choice but to accept denuclearization, 2) IAEA was empowered to implement detectable inspection measures and methods, which later came to fruition as the IAEA Safeguards Agreement Additional Protocol (AP), 3) economic sanctions for the purpose of promoting denuclearization of Iraq were not very successful, and 4) denuclearization of Iraq and subsequent Iraq war, together with collapse of the Hussein regime, has affected the denuclearization of Libya, North Korea and Iraq. Furthermore, the lessons learned from the denuclearization are 1) the need for universalization of AP, and necessities for 2) economic sanctions that are suitable for the original purposes without being abused, 3) the need for diplomatic efforts including denuclearization frameworks and measures with a clear roadmap

JAEA Reports

Annual report for FY2020 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2020 - March 31, 2021)

Naraha Center for Remote Control Technology Development, Fukushima Research Insitute

JAEA-Review 2022-021, 40 Pages, 2022/09

JAEA-Review-2022-021.pdf:2.54MB

Naraha Center for Remote Control Technology Development (NARREC) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). NARREC consists of a Full-scale Mock-up Test Building and Research Management Building. Various test facilities are installed in these buildings for the decommissioning work of Fukushima Daiichi NPS. These test facilities are intended to be used for various users, such as companies engaged in the decommissioning work, research and development institutions, educational institutions and so on. The number of NARREC facility uses was 69 in FY2020. We participated booth exhibitions and presentations on the decommissioning related events. Moreover, we also contributed to the development of human resources by supporting the 5th Creative Robot Contest for Decommissioning on online because of the COVID-19. This report summarizes the activities of NARREC in FY2020, such as the utilization of facilities and equipment of NARREC, the development of remote control technologies for supporting the decommissioning work, arrangement of the remote control machines for emergency response, and training for operators by using the machines.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2022)

Sasao, Eiji; Ishimaru, Tsuneari; Niwa, Masakazu; Shimada, Akiomi; Shimada, Koji; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; Ogita, Yasuhiro; et al.

JAEA-Review 2022-022, 29 Pages, 2022/09

JAEA-Review-2022-022.pdf:0.97MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2022. The objectives and contents in fiscal year 2022 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques

JAEA Reports

The Laboratory Operation Based on ISO/IEC 17025; Radioactivity analysis of environmental samples by germanium semiconductor detectors

Urushidate, Tadayuki*; Yoda, Tomoyuki; Otani, Shuichi*; Yamaguchi, Toshio*; Kunii, Nobuaki*; Kuriki, Kazuki*; Fujiwara, Kenso; Niizato, Tadafumi; Kitamura, Akihiro; Iijima, Kazuki

JAEA-Review 2022-023, 8 Pages, 2022/09

JAEA-Review-2022-023.pdf:1.19MB

After the accident of the Fukushima Daiichi Nuclear Power Station, the Japan Atomic Energy Agency has newly set up a laboratory in Fukushima and started measuring radioactivity concentrations of environmental samples. In October 2015, Fukushima Radiation Measurement Group has been accredited the ISO/IEC 17025 standard by the Japan Accreditation Board (JAB) as a testing laboratory for radioactivity analysis ($$^{134}$$Cs, $$^{137}$$Cs) based on Gamma-ray spectrometry with germanium semiconductor detectors. The laboratory has measured approximately 60,000 of various environmental samples at the end of March 2022. The laboratory quality control and measurement techniques have been accredited by regular surveillance of JAB. In September 2019, the laboratory renewed accreditation as a testing laboratory for radioactivity analysis.

JAEA Reports

Annual report of Nuclear Human Resource Development Center (April 1, 2020 - March 31, 2021)

Nuclear Human Resource Development Center

JAEA-Review 2022-024, 60 Pages, 2022/10

JAEA-Review-2022-024.pdf:2.48MB

This annual report summarizes the activities of Nuclear Human Resource Development Center (NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the fiscal year (FY) 2020. In FY 2020, in addition to the regular training programs at NuHRDeC, we actively organized special training courses responding to the external training needs, cooperated with universities, offered international training courses for Asian countries and promoted activities of the Japan Nuclear Human Resource Development Network (JN-HRD.net). In FY2020, due to the spread of the new coronavirus infection over the world, some training courses were conducted online using web conference systems. Regular national training programs; training courses for radioisotopes and radiation engineers, nuclear energy engineers and national qualification examinations, were conducted as scheduled in the annual plan. We also delivered training for prefectural and municipal officials in Fukushima meeting their training needs. We continued cooperative activities with universities, such as acceptance of postdoctoral researchers, and activities in line with the cooperative graduate school system, including the acceptance of students from Nuclear Professional School, the University of Tokyo. Furthermore, joint course among seven universities was successfully held by utilizing remote education system. The joint course and the intensive summer course were conducted as part of the collaboration network with universities. The Instructor Training Program (ITP) under contract with Ministry of Education, Culture, Sports, Science and Technology, was continually offered to the ITP participating countries. As part of the ITP, the Instructor Training Courses such as "Reactor Engineering Course" and the Nuclear Technology Seminar "Basic Radiation Knowledge for School Education Seminar" were conducted online at NuHRDeC. As secretariat of JN-HRD.net, we steadily facilitated the network and conducted webinar and online training despite circulat

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2021 fiscal year

Nakayama, Masashi

JAEA-Review 2022-025, 164 Pages, 2022/11

JAEA-Review-2022-025.pdf:12.25MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA). The main aim of this project is to enhance the reliability of relevant disposal technologies for geological disposal of high-level radioactive waste through a comprehensive research and development (R&D) program in the deep geological environment within the host sedimentary rock at Horonobe in Hokkaido, north Japan. In fiscal year 2021, we continued R&D on three important issues specified in the "Horonobe Underground Research Plan from Fiscal Year 2020", which involve "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rock to natural perturbations". Specifically, "full-scale engineered barrier system (EBS) performance experiment" and "solute transport experiment with model testing" were carried out as part of "Study on near-field system performance in geological environment". "Demonstration of engineering feasibility of repository technology" and "evaluation of EBS behaviour over 100$$^{circ}$$C' were addressed for "Demonstration of repository design options". A study on "Understanding of buffering behaviour of sedimentary rock to natural perturbations" was also implemented in two areas, "evaluation of intrinsic buffering against endogenic and exogenic processes" and "development of techniques for evaluating excavation damaged zone (EDZ) self-sealing behaviour after backfilling". The results of the R&D, along with those obtained in other departments of JAEA, will reinforce the technical basis for both repository implementation and safety regulation. For the sake of this, we will steadily proceed with this project in collaboration with relevant organizations and universities both domestically and internationally and also widely publish the plans and results of the R&D to ensure their transparency and technical reliability.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2022 fiscal year

Nakayama, Masashi

JAEA-Review 2022-026, 66 Pages, 2022/11

JAEA-Review-2022-026.pdf:12.31MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. In fiscal year 2022, we continue to conduct research on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rocks to natural perturbations", which are the important issues shown in the Horonobe underground research plan from fiscal year 2020. The main studies to be conducted in fiscal year 2022 are as follows. As "Study on near-field system performance in geological environment", we will continue to the test under the simulated condition in which the heat generation by the high-level radioactive waste has subsides in the full-scale engineered barrier system (EBS) performance experiment. We will also conduct solute transport experiment with model testing that take into account the effects of organic matter, microbes, and colloids, and initiate borehole investigation to evaluate solute transport experiments on fractures distribute in Koetoi formation. As "Demonstration of repository design concept", we will continue experiment and analysis of concrete deterioration in the underground environment as a demonstration of remote technique for emplacement and retrievable. As a demonstration of the closure techniques, laboratory tests will be continued to investigate the mechanism of bentonite runoff behaviour, which could be a factor in changing the performance of backfill material, and to expand data on swelling and deformation behaviour. In addition, in-situ borehole closure tests will be conducted to evaluate the applicability of the closure method. As "Understanding of buffering behaviour of

JAEA Reports

Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-027, 85 Pages, 2022/11

JAEA-Review-2022-027.pdf:5.72MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In this study, ETCC, a gamma-ray imaging system, was modified to be a portable device that can be used in 1F decommissioning project and can operate in high-dose environments. ETCC is the world's first gamma-ray camera capable of complete bijective imaging, the same as an optical camera. Therefore, ETCC can make general quantitative image analysis methods applicable to radiation, …

JAEA Reports

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-028, 54 Pages, 2022/11

JAEA-Review-2022-028.pdf:2.97MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of Tailor-made Adsorbents for Uranium Recovery from Seawater on the Basis of Uranyl Coordination Chemistry" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop a new ligand class for efficient and selective capture of uranium from seawater. On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study fundamental coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology …

JAEA Reports

Semi-autonomous remote-control technology of an articulated mobile robot to recover from stuck states (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*

JAEA-Review 2022-029, 37 Pages, 2022/11

JAEA-Review-2022-029.pdf:1.89MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semiautonomous remote-control technology of an articulated mobile robot to recover from stuck states" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method.

JAEA Reports

Development of methodology combining chemical analysis technology with informatics technology to understand perspectives property of debris and tie-up style human resource development (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Fukushima University*

JAEA-Review 2022-030, 94 Pages, 2022/12

JAEA-Review-2022-030.pdf:4.87MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of methodology combining chemical analysis technology with informatics technology to understand perspectives property of debris and tie-up style human resource development" conducted in FY2021. The present study aims to Goal of this study is to implement a research plan relate to a development of combinational technology of new chemical analysis with informatics, and the aim is to develop new system for whole image estimation system using small quantities of information. Conducting the collaboration study with JAEA researchers (tie-up style) make connect to the development of human resource from master's course student to post-doctoral researchers who are progress …

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2022-031, 89 Pages, 2022/12

JAEA-Review-2022-031.pdf:8.45MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2021. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under 1 kGy/h and compact-light-weight to fit constraints of the penetration size and the payload. The project aims to design and evaluate neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies …

JAEA Reports

Human resource development related to remote control technology for monitoring inside RPV pedestal during retrieval of fuel debris (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-032, 102 Pages, 2022/12

JAEA-Review-2022-032.pdf:9.83MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Human resource development related to remote control technology for monitoring inside RPV pedestal during retrieval of fuel debris" conducted in FY2021. The present study aims to construct a monitoring platform for understanding the status inside a reactor during fuel debris removal, and measurement and visualization by sensors moving on the platform. In addition, to develop research personnel through research education by participating in such research projects, classroom lectures, and facility tours is also a goal of this project. In FY2021, we mainly worked on improving the base design and technology development that we had worked on in the previous year, and we also prepared for integration experiments.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2022-033, 80 Pages, 2022/12

JAEA-Review-2022-033.pdf:4.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop an optical fiber type radiation sensor that can measure the radiation distribution one-dimensionally along the fiber under a high radiation field for the decommissioning of 1F. Based on the conventional time-of-flight method, we found several promising sensor candidates for the radiation distribution measurement under high dose rate and many scattered gamma-rays.

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-034, 135 Pages, 2023/01

JAEA-Review-2022-034.pdf:8.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2021. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We develop sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training. In particular, we will apply the extremely small amount analysis (ICP-MS/MS), which has recently been successful …

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2021 (April 1, 2021 - March 31, 2022)

HPC Technology Promotion Office

JAEA-Review 2022-035, 219 Pages, 2023/01

JAEA-Review-2022-035.pdf:10.94MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2021, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2021, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Investigation of environment induced property change and cracking behavior in fuel debris (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-036, 115 Pages, 2023/01

JAEA-Review-2022-036.pdf:7.15MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Investigation of environment induced property change and cracking behavior in fuel debris" conducted in FY2021. The present study aims to investigate the environment induced property change and cracking behavior in fuel debris from the viewpoints of materials science. The research objective is cracking behavior in fuel debris which is presumed to be influenced by environment during long-term fuel debris processing period. The degradation models will be established to simulate the oxidation and hydrogenation processes possibly occurred at fuel debris. The evolution of phase constitution and the corresponding property change in the simulated fuel debris under various environmental conditions …

JAEA Reports

Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Japan Chemical Analysis Center*

JAEA-Review 2022-037, 118 Pages, 2023/01

JAEA-Review-2022-037.pdf:6.92MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays" conducted in FY2021. The present study aims to enable rapid analysis of radionuclides in fuel debris and waste, we have established the latest measurement system, such as the multiple $$gamma$$-ray detection methods, and the Spectral Determination Method (hereafter referred to "SDM") was developed. In the study, the $$gamma$$-ray measuring device was installed, and the measurement system consisting of the Ge detector, CeBr$$_{3}$$ detector, and NaI detector was completed in FY2021. In the SDM development, standard spectra of $$gamma$$-ray singles, multiple $$gamma$$-ray measurements, …

JAEA Reports

Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2022-038, 102 Pages, 2023/01

JAEA-Review-2022-038.pdf:4.76MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2021. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete altered by leaching, to develop a model to predict concentration profiles, and to analyze waste management scenarios, with a focus on underground concrete structures in contact with contaminated water. Migration behaviors depend on radionuclides and their chemical species. Sorption of I$$^{-}$$ is less significant on C-S-H and C-A-S-H than on hardened cement paste with two orders of magnitude smaller distribution coefficient $$K_{d}$$, while $$K_{d}$$ of U was the same …

JAEA Reports

Research report on information of the Nuclear Ship "MUTSU" (Contract research)

Aomori Research and Development Center

JAEA-Review 2022-039, 36 Pages, 2023/02

JAEA-Review-2022-039.pdf:4.3MB

In order to use for the consideration of floating nuclear power plant, results of survey about actual process and literature are summarized in this report.

JAEA Reports

Novel mechanical manipulator for efficient fuel debris retrieval (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-040, 70 Pages, 2023/01

JAEA-Review-2022-040.pdf:3.17MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Novel mechanical manipulator for efficient fuel debris retrieval" conducted in FY2021. The present study aims to the development of a collision-tolerant robotic manipulator with the mechanical variable impedance actuators in an unknown environment. Another research target is the system architecture of an artificial intelligence-based control method for efficient exploration and decommissioning. In addition to conducting an investigation in the area deep inside the aperture, which has been difficult with conventional investigations, we aim to recover pebble-shaped fuel debris at the bottom of the pedestal using a gripper at the tip of the manipulator.

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-041, 76 Pages, 2023/01

JAEA-Review-2022-041.pdf:3.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted in FY2021. The present study aims to develop a Cooperative Operation Robot system for RAdiation Source Exploration (CORRASE). The multiple robot system provides radiation source exploration with wide field of view, rapidity, and low cost. The radiation source exploration is realized with multiple robots carrying directional gamma-ray detectors determining the incident direction of the incoming gamma-rays. We will develop the system by the final year of this proposal aiming for application in the Fukushima Daiichi Nuclear Power Station.

JAEA Reports

Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; i-lab*

JAEA-Review 2022-042, 67 Pages, 2023/01

JAEA-Review-2022-042.pdf:7.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS" conducted in FY2021. The present study aims to increase the emission intensity of LIBS (laser-induced breakdown spectroscopy) by superimposing MW (microwave) and apply it to uranium isotope measurement. In FY2021, after confirming that there was no problem in terms of specifications including noise leakage by downsizing the semiconductor MW oscillator and evaluating it as a single unit, the possibility of uranium isotope measurement was examined by applying it to the LIBS experiment. In addition, the optimized design of the MW antenna was carried out. By applying them, we confirmed the actual performance, …

JAEA Reports

Fuel debris criticality analysis technology using non-contact measurement method (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-043, 52 Pages, 2023/01

JAEA-Review-2022-043.pdf:3.48MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2021. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology (Tokyo Tech), National Institute of Advanced Industrial Science and Technology (AIST), and National Research Nuclear University (MEPhI) as the first year of four years research project. For the criticality characteristic measurement systems to be developed by the Japanese and Russian sides, …

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2021 - March 31, 2022)

Nuclear Emergency Assistance and Training Center

JAEA-Review 2022-044, 58 Pages, 2022/12

JAEA-Review-2022-044.pdf:3.83MB

The Japan Atomic Energy Agency (JAEA) is one of the designated public corporations, which is the agency dealing with emergency situations in cooperation with the Japanese and local governments under the Disaster Countermeasures Basic Act and under the Armed Attack Situation Response Law. JAEA has, therefore, responsibilities of providing technical assistances to the Japanese and local governments in case of nuclear or radiological emergencies based on these acts. To fulfill the assistances, the JAEA has prepared the Nuclear Emergency Support Measures Regulation, Disaster Prevention Work Plan and Civil Protection Work Plan. The Nuclear Emergency Assistance and Training Center (NEAT) is the main center of the technical assistance in case of emergency, and dispatches experts of JAEA, supplies equipment and materials and gives technical advice and information, to the Japanese and local governments for emergency based on the regulation and plans. In normal time, the NEAT provides the technical assistances such as the exercises and training courses concerning the nuclear preparedness and response to the JAEA experts and to emergency responders including the Japanese and local government officers. This report introduces the results of activities in Japanese fiscal year 2021, conducted by the NEAT.

JAEA Reports

Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms (Contract Research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute for Materials Science*

JAEA-Review 2022-045, 82 Pages, 2023/01

JAEA-Review-2022-045.pdf:4.6MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms" conducted in FY2021. The present study aims to develop innovative diagnostic techniques such as accelerated test specimens and on-site genetic testing for microbially induced and accelerated corrosion of metallic materials (microbially influenced corrosion, MIC), and to identify the conditions that promote MIC at 1F for proposing methods to prevent MIC through water quality and environmental control. We also aim to develop a research base based on materials, microorganisms, and electrochemistry, to develop technologies that can be used by engineers in the field, …

JAEA Reports

Clarification of debris formation conditions on the basis of the sampling data and experimental study using simulated fuel debris and reinforcement of the analytical results of severe accident scenario (Contract Research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Fukui*

JAEA-Review 2022-046, 108 Pages, 2023/01

JAEA-Review-2022-046.pdf:6.25MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Clarification of debris formation conditions on the basis of the sampling data and experimental study using simulated fuel debris and reinforcement of the analytical results of severe accident scenario" conducted in FY2021. The research on fuel debris so far is based on TMI-2 accident that is typical PWR accident but resent scenario analysis of sever accident progression and sampling data of the in reactor materials predict that fuel debris is diversity and piled up complicatedly depending on the unit and in reactor position. We are necessary to presume the thermodynamic condition of fuel debris during the accident in order to estimate accumulation state of debris.

JAEA Reports

Progress report on Nuclear Safety Research Center (JFY 2021)

Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness

JAEA-Review 2022-047, 180 Pages, 2023/01

JAEA-Review-2022-047.pdf:13.36MB

Nuclear Safety Research Center (NSRC), Sector of Nuclear Safety Research and Emergency Preparedness, Japan Atomic Energy Agency (JAEA) provides technical supports for the nuclear regulatory bodies by conducting safety researches based on the Mid-Long Term Target approved by the Japanese government. This report summarizes the organization of NSRC and the cooperative research activities with domestic and international organizations as well as the nuclear safety research activities and results in JFY 2021 on the nine research fields in NSRC; (1) severe accident, (2) radiation risk, (3) nuclear fuels in light water reactors (LWRs), (4) thermohydraulic behavior in LWRs, (5) materials degradation and structural integrity, (6) nuclear fuel cycle facilities, (7) criticality management, (8) nuclear safeguards, and (9) radioactive waste management. Also summarized are the two cross-organizational activities; (1) research for facilitating application of risk information and (2) analysis of regulatory and international information, which support the nine research activities.

JAEA Reports

Annual report for FY2021 on activities of decommissioning and radioactive waste management

Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development

JAEA-Review 2022-048, 124 Pages, 2023/01

JAEA-Review-2022-048.pdf:6.38MB

This annual report summarizes the activities of decommissioning and radioactive waste management in Japan Atomic Energy Agency (JAEA) in the period from April 1, 2021 to March 31, 2022. With regard to the technology development on reprocessing of spent nuclear fuels, Tokai Reprocessing Plant upgraded its binding equipment as a countermeasure for the glass melter shutdown that had occurred at Tokai Vitrification Facility in July 2019. The vitrification process was resumed in August 2021, and 13 vitrified waste packages were produced. As technology development pertaining to process of radioactive wastes, activities were carried out according to the annual plan. In Nuclear Fuel Cycle Engineering Laboratories, technology of immobilization for radioactive waste has been developed to keep the safety. In Ningyo-toge Environmental Engineering Center, a uranium measurement technology, environmental research and decontamination technology has been developed for uranium waste management.

JAEA Reports

Consideration on roles and relationship between observations/measurements and model predictions for environmental consequence assessments for nuclear facilities

Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori

JAEA-Review 2022-049, 76 Pages, 2023/01

JAEA-Review-2022-049.pdf:3.74MB

Before construction and after operation of nuclear facilities, environmental consequence assessments are conducted for normal operation and an emergency. These assessments mainly aim at confirming safety for the public around the facilities and producing relief for them. Environmental consequence assessments are carried out using observations/ measurements by environmental monitoring and/or model predictions by calculation models, sometimes using either of which and at other times using both them, according to the situations and necessities. First, this report investigates methods, roles, merits/demerits and relationship between observations/measurements and model predictions which are used for environmental consequence assessments of nuclear facilities, especially holding up a spent nuclear fuel reprocessing plant at Rokkasho, Aomori as an example. Next, it explains representative examples of utilization of data on observations/measurements and results on model predictions, and considers points of attention at using them. Finally, the report describes future direction, for example, improvements of observations/measurements and model predictions, and fusion of both them.

JAEA Reports

Safe, efficient cementation of challenging radioactive wastes using alkali activated materials with high-flowability and high-anion retention capacity (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2022-050, 116 Pages, 2023/01

JAEA-Review-2022-050.pdf:11.41MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Safe, efficient cementation of challenging radioactive wastes using alkali activated materials with high-flowability and high-anion retention capacity" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to explore alkali activated materials with high anionic nuclide retention and flowability and their recipes for safe storage and disposal of iron flocculant from the water treatment facility at 1F, and to propose a design of a solidification device that is feasible as an actual plant. In order to achieve these objectives, the following five items were carried out in this study.

JAEA Reports

Establishing a new evaluation system to characterize radiation carcinogenesis by stem cell dynamics (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institutes for Quantum Science and Technology*

JAEA-Review 2022-051, 78 Pages, 2023/01

JAEA-Review-2022-051.pdf:7.12MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Establishing a new evaluation system to characterize radiation carcinogenesis by stem cell dynamics" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. In this study, we will use cell lineage tracing technology that can permanently label stem cells and their progenies to capture and mathematically model the long-term clonal proliferation of cells in mammary tissue after high to low dose radiation exposure to determine the origin of radiation carcinogenesis, the stem cells. The objective is to characterize radiation-induced breast cancer by its dynamics.

JAEA Reports

Present status of R&D in JAEA on partitioning and transmutation technology

Nuclear Science and Engineering Center; Fuel Cycle Design Office; Plutonium Fuel Development Center; Nuclear Plant Innovation Promotion Office; Fast Reactor Cycle System Research and Development Center; J-PARC Center

JAEA-Review 2022-052, 342 Pages, 2023/02

JAEA-Review-2022-052.pdf:18.05MB

This report summarizes the current status and future plans of research and development (R&D) on partitioning and transmutation technology in Japan Atomic Energy Agency, focusing on the results during the 3rd Medium- to Long-term Plan period (FY 2015-2021). Regarding the partitioning technology, R&D of the solvent extraction method and the extraction chromatography method are described, and regarding the minor actinide containing fuel technology, R&D of the oxide fuel production using the simplified pellet method, the nitride fuel production using the external gelation method, and pyrochemical reprocessing of the nitride fuel were summarized. Regarding transmutation technology, R&D of technology using fast reactors and accelerator drive systems were summarized. Finally, the new facilities necessary for the future R&D were mentioned.

JAEA Reports

Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3 (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-053, 89 Pages, 2023/02

JAEA-Review-2022-053.pdf:3.47MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3" conducted in FY2021. The present study aims to elucidate the cause of the high dosage under shield plug by clarification of to the cesium behavior of migration, adhesion to structure and deposition as well as evaluate the properties of metal-rich debris predeceasing melted through the materials science approach based on the most probable scenario of accident progression of Unit 2 and 3. In this fiscal year, the followings were achieved.

JAEA Reports

Estimation of the in-depth debris status of Fukushima Unit-2 and Unit-3 with Multi-physics modeling (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Waseda University*

JAEA-Review 2022-054, 150 Pages, 2023/02

JAEA-Review-2022-054.pdf:7.26MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (hereafter referred to "1F"). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Estimation of the in-depth debris status of Fukushima Unit-2 and Unit-3 with multi-physics modeling" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. Continuous update on understanding of the damaged 1F reactors is important for safe and efficient decommissioning of the reactors. This study aimed to estimate the in-depth debris status of the damaged 1F Unit-2 and Unit-3 through multi-physics modeling, which comprises of MPS method, simulated molten debris relocation experiment and high-temperature melt property data acquisition in the three-year project from FY2019.

JAEA Reports

Individual exposure dose assessment of residents for lifting of evacuation orders (Contract research)

Sato, Rina; Sanada, Yukihisa; Yoshimura, Kazuya; Nakayama, Mariko*

JAEA-Review 2022-055, 42 Pages, 2023/01

JAEA-Review-2022-055.pdf:1.31MB

The evacuation order zones established after the accident at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station have been reorganized according to the decrease in ambient dose equivalent rates and the decontamination progress. It has been decided to decontaminate the difficult-to-return zones and lift the evacuation order depending on the evacuee's intention of returning to the areas over the course of the 2020s. In order to consider the future of individual exposure dose assessment for residents for lifting of the evacuation orders, the methods and characteristics of the assessment that have been conducted after the accident using personal dosimeter measurements and simulations were systematically reviewed. This report summarized the results of the review.

JAEA Reports

Research on factor analysis and technical process for achieving denuclearization; Denuclearization of South Africa

Tazaki, Makiko; Kimura, Takashi; Shimizu, Ryo; Tamai, Hiroshi; Nakatani, Takayoshi; Suda, Kazunori

JAEA-Review 2022-056, 54 Pages, 2023/01

JAEA-Review-2022-056.pdf:1.86MB

As part of the "Research on Factor Analysis and Technical Processes for Achieving Denuclearization" South Africa's nuclear development and denuclearization cases were investigated then analyzed from seven denuclearization factors namely (1) motivation for nuclear development, (2) internal and external situations at the time of denuclearization decision, (3) progress of nuclear development, (4) effects of sanctions, (5) incentives for denuclearization, (6) international framework for denuclearization, (7) denuclearization and verification methods. At the same time, characteristics of its denuclearization and lessons learned from the denuclearization were also analyzed. South Africa shifted its nuclear activities from research and development of "peaceful nuclear detonation" in the 1970s to developing "limited nuclear deterrence" and finally to manufacturing "transportable nuclear weapons" in the late 1980s. By then, it had completed producing six nuclear explosive devices using highly enriched uranium. However, in 1989, along with the abolition of the apartheid policy, South Africa decided denuclearization and dismantled its nuclear explosive devices and related facilities. Upon completion of dismantlement, it joined the Treaty on the Non- Proliferation of Nuclear Weapons and concluded a Comprehensive Safeguards Agreement (CSA) with the International Atomic Energy Agency (IAEA). The South Africa has remained one of the rare countries that has continued to the peaceful use nuclear energy, and its voluntary denuclearization is considered as a good example of denuclearization in the future.

JAEA Reports

Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-057, 98 Pages, 2023/02

JAEA-Review-2022-057.pdf:8.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal" conducted in FY2021. The present study aims to construct a database for quantitative prediction of contaminated reinforced concrete inside the reactor building. In FY2021, data on deformation and water movement caused by drying and reabsorption of mortar were obtained to evaluate the mesoscale cracking behavior of concrete. A rigidbody spring model was used to develop a program that can consider changes in concrete age and temperature, water, and stress conditions. To evaluate the long-term penetration behavior of radionuclides into the factual matrix, data on sorption …

JAEA Reports

Fluorination method for classification of the waste generated by fuel debris removal (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*

JAEA-Review 2022-058, 191 Pages, 2023/02

JAEA-Review-2022-058.pdf:16.99MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination method for classification of the waste generated by fuel debris removal" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop a method for separating nuclear fuel material from waste by fluorination in order to contribute to the classification of waste generated by fuel debris removal at 1F. In order to comprehensively evaluate the fluorination behavior for the generated phase in various MCCI products, some simulated wastes were prepared by controlling redox conditions, and the fluorination experiment was carried out.

JAEA Reports

Development of the continuous monitoring of tritium water by mid-infrared laser spectroscopy (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institutes of Natural Sciences*

JAEA-Review 2022-059, 34 Pages, 2023/01

JAEA-Review-2022-059.pdf:1.58MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of the continuous monitoring of tritium water by mid-infrared laser spectroscopy" conducted in FY2021. The present study aims to demonstrate the principle of short-time measurement of tritiated water at the "60 Bq/cc level" using a cavity ring-down measurement system with a mid-infrared laser. In order to achieve the above goal, (1) research on the cavity ring-down system and (2) evaluation of hydrogen isotope composition under environmental conditions and preparation of standard samples (subcontractor: Hirosaki University) were conducted this fiscal year. In (1), a mid-infrared cavity ring-down test was conducted. An optical bench (3 m $$times$$ 1.2 m) was set up in the laboratory, …

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-060, 91 Pages, 2023/02

JAEA-Review-2022-060.pdf:3.95MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to investigation of fuel debris in RPV by an advanced Super Dragon articulated robot arm" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. Through this research from FY2019 to FY2021, we will closely cooperate with each research item under the principal investigator as well as with CLADS, etc., to advance the research while exchanging opinions/information with the site and promote the research implementation plan in order to apply the technology to the actual equipment at the 1F site. Meetings and conferences were held to promote the research implementation plan, with the aim of realizing a technology …

JAEA Reports

Research on radioactive aerosol control and decontamination at Fukushima Daiichi Nuclear Power Station decommissioning (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-061, 59 Pages, 2023/02

JAEA-Review-2022-061.pdf:2.38MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Research on radioactive aerosol control and decontamination at Fukushima Daiichi Nuclear Power Station decommissioning" conducted in FY2021. The present study aims to develop a safe laser decontamination system that simultaneously incorporates an advanced particle detection and characterization system together with aerosol dispersion control in collaboration with the UK researchers. By using the UK partner's fundamental studies related to aerosol and water interface interactions, various methods such as electro-chemical processing of water-mist particles and spray droplets will be applied for effective control of ultra-fine aerosol particle dispersions in a large containment volume.

JAEA Reports

Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc. (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-062, 121 Pages, 2023/03

JAEA-Review-2022-062.pdf:4.78MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc." conducted in FY2021. The present study aims to propose a construction method to stop jet deflectors by improved geopolymer and ultra-heavy muddy water, and to repair the lower part of the dry well. In addition, in order to increase the options for on-site construction in unknown situations such as deposition conditions, we will examine a wide range of construction outside the pedestal, and evaluate the feasibility of the construction method by the latest thermal flow simulation method. When widely constructed, fuel debris and deposits discharged out of the pedestal are coated with water stop and repair materials and become waste ...

JAEA Reports

The Study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-063, 86 Pages, 2023/02

JAEA-Review-2022-063.pdf:3.81MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to investigate the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. The samples to be analyzed in this study were collected from wild Japanese macaques exposed in the ex-evacuation zone after the accident of 1F.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2019 (Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2022-064, 97 Pages, 2023/02

JAEA-Review-2022-064.pdf:2.91MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and TPL(Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2019. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Development of high-resolution imaging camera for alpha dust (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-065, 111 Pages, 2023/03

JAEA-Review-2022-065.pdf:6.8MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of high-resolution imaging camera for alpha dust" conducted from FY2018 to FY2021. Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a novel alpha-ray camera consisting of imaging and an energy spectrometer to find the alpha dust to reduce the risk of health damage in decommissioning. We have developed the camera with a position resolution of less than 10 $$mu$$m, and the measurement test for the energy spectra was operated using several alpha-ray sources with an unfolding method.

JAEA Reports

Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-066, 91 Pages, 2023/03

JAEA-Review-2022-066.pdf:5.88MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions" conducted in FY2021. In the project, radiochemists, nuclear chemists, nuclear physicists, material scientists, and environmental biologists are teamed to elucidate the mechanism of the degradation of fuel debris by combined effects of radiological, chemical, and biological functions. In fiscal year 2021, the members of the project team have conducted on the microbial degradation of the simulated fuel debris under $$gamma$$-ray irradiation, complex formation of pentavalent uranium, construction of microchannel system to detect micro-particles and the simulated fuel debris, sorption of tetravalent elements ...

JAEA Reports

Development of environmental mitigation technology with novel water purification agents (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shinshu University*

JAEA-Review 2022-067, 98 Pages, 2023/03

JAEA-Review-2022-067.pdf:3.72MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of environmental mitigation technology with novel water purification agents" conducted in FY2021. The present study aims to develop a reusable adsorbent for strontium ions through joint research between Japan and the United Kingdom, and to reduce the amount of used adsorbent generated through the decontamination process. This fiscal year, the preparation method of materials was improved based on the results obtained in the first year of the project. Moreover, various metal salts were added as additives to see the influence on the yield and adsorption performance. Structural analyses were conducted by observing the resulting materials with SEM, and theoretical analyses were performed by combining ...

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-068, 90 Pages, 2023/05

JAEA-Review-2022-068.pdf:3.55MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of thin SiC neutron detector with high radiation resistance" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional neutron detectors is difficult because heavy radiation shields are needed.

JAEA Reports

Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-069, 114 Pages, 2023/03

JAEA-Review-2022-069.pdf:5.91MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis" conducted in FY2021. In this work, in order to ensure the long-term reliability of steel structures that ensure important confinement functions in the debris removal process, such as existing PCVs and newly constructed negative pressure maintenance systems and piping, corrosion phenomena in wet environments where $$alpha$$- and $$beta$$-ray emitting nuclides come into contact with steel are clarified for the first time.

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2022-070, 70 Pages, 2023/03

JAEA-Review-2022-070.pdf:5.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2021. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed ...

JAEA Reports

Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-071, 123 Pages, 2023/03

JAEA-Review-2022-071.pdf:6.07MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2021. The present study aims to develop an evaluation method necessary to obtain a perspective on the long-term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2021, the first year of the three-year plan, the following research items were undertaken by clarifying specific research methods, setting research directions, making necessary preparations, and conducting some tests and other activities.

JAEA Reports

Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-072, 116 Pages, 2023/03

JAEA-Review-2022-072.pdf:6.32MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment" conducted in FY2021. The present study aims to establish the rational waste disposal concept of a variety of wastes generated in 1F by the novel hybrid-waste-solidification. The phosphate form of ALPS sediment wastes containing Eu$$^{3+}$$, Ce$$^{4+}$$, Sr$$^{2+}$$ and Cs$$^{+}$$ were synthesized as well as radioactive $$^{95}$$Sr, $$^{136}$$Cs and $$^{126}$$I which are both $$gamma$$ emitters, AREVA sludge and Iodine Calcium apatite were synthesized, and they were processed to the stabilization treatment such as sintering and Spark Plasma ...

JAEA Reports

On-site training using JMTR and related facilities in FY2019

Nakano, Hiroko; Nishikata, Kaori; Nagata, Hiroshi; Ide, Hiroshi; Hanakawa, Hiroki; Kusunoki, Tsuyoshi

JAEA-Review 2022-073, 23 Pages, 2023/01

JAEA-Review-2022-073.pdf:2.02MB

A practical training course using the JMTR (Japan Materials Testing Reactor) and other research infrastructures was held from July 24th to July 31st in 2019 for Asian young researchers and engineers. This course was adopted as Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) which is the project of the Japan Science and Technology Agency, and this course aims to enlarge the number of high-level nuclear researchers/engineers in Asian countries which are planning to introduce a nuclear power plant, and to promote the use of facilities in future. In this year, 12 young researchers and engineers joined the course from 6 countries. This course consists of lectures, which are related to irradiation test research, safety management of nuclear reactors, nuclear characteristics of the nuclear reactors, etc., practical training such as practice of research reactor operation using simulator and technical tour of nuclear facilities on nuclear energy. The content of this course in FY 2019 is reported in this paper.

JAEA Reports

Annual report on the activities of safety in J-PARC, FY2021

Safety Division, J-PARC Center

JAEA-Review 2022-074, 146 Pages, 2023/03

JAEA-Review-2022-074.pdf:7.16MB

This annual report describes the activities on radiation safety and general safety in Japan Proton Accelerator Research Complex (J-PARC) in FY 2021. Activities on radiation safety such as radiation control in each facility, environmental monitoring, individual monitoring, maintenance of monitoring instruments and other activities on radiation matters are represented, and activities of general safety such as safety committees, meetings, lectures, trainings and periodical checks are described. In addition, activities on promotion of safety culture and the technological developments and research on safety issues are also summarized in each separate section.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2020 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2022-075, 112 Pages, 2023/03

JAEA-Review-2022-075.pdf:8.25MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility, TPL (Tritium Process Laboratory) and FEL (Free Electron Laser). This annual report describes the activities of our department in fiscal year of 2020. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Development of stable solidification technique of ALPS sediment wastes by apatite ceramics (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-076, 227 Pages, 2023/03

JAEA-Review-2022-076.pdf:9.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of stable solidification technique of ALPS sediment wastes by apatite ceramics" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to establish an apatite solidification process of radioactive sediment wastes, which were generated from the ALPS process manipulating the large amount of contaminated water from 1F. We selected the precipitation method and post stabilization for engineering-scale process. Investigation on composition, structure and elution properties of apatite and related phosphate waste forms fabricated from the simulated ALPS sediment wastes were implemented.

JAEA Reports

Annual report for FY 2021 on the activities of radiation safety in Nuclear Science Research Institute etc. (April 1, 2021 - March 31, 2022)

Department of Radiation Protection, Nuclear Science Research Institute; Nuclear Facilities Management Section, Aomori Research and Development Center

JAEA-Review 2022-077, 104 Pages, 2023/03

JAEA-Review-2022-077.pdf:2.5MB

This annual report describes the activities in the 2021 fiscal year of Department of Radiation Protection in Nuclear Science Research Institute, Harima Synchrotron Radiation Radioisotope Laboratory and Nuclear Facilities Management Section in Aomori Research and Development Center. The activities described are environmental monitoring, radiation protection practices in workplaces, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection. At these institutes the occupational exposures did not exceed the dose limits. The radioactive gaseous and liquid discharges from the facilities were well below the prescribed limits. The research and development activities produced certain results in the fields of radiation protection technique.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2021

Nakada, Akira; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Futagawa, Kazuo; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; et al.

JAEA-Review 2022-078, 164 Pages, 2023/03

JAEA-Review-2022-078.pdf:2.64MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2021 to March 2022. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2021

Nakada, Akira; Kanai, Katsuta; Kokubun, Yuji; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei*; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; et al.

JAEA-Review 2022-079, 116 Pages, 2023/03

JAEA-Review-2022-079.pdf:2.77MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2021. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Research and development in the fiscal year 2021 in Ningyo-toge Environmental Engineering Center; Topics

Ningyo-toge Environmental Engineering Center

JAEA-Review 2022-080, 44 Pages, 2023/03

JAEA-Review-2022-080.pdf:5.85MB

This report outlines some main research and development activities executed by the Ningyo-toge Environmental Engineering Center in FY2021. The Center was working on the development of the nuclear fuel cycle with a focus on its front-end (i.e., uranium exploration, mining, refining, conversion, and enrichment) until 2001, and is now dismantling and removing the facilities and equipment used in the past. In addition, based on the concept of "Uranium and environmental research platform" announced in 2016, we are also working on research and development for the safe processing and disposal of uranium wastes to steadily keep the decommissioning. This research and development can be mainly divided into "Environmental research" and "Uranium waste engineering research"; the former takes advantage of the characteristics of the natural environment in Ningyo-toge, and the latter utilizes our facilities and potentials. Some works are also made on safety and its management as well as radiation effect research in terms of health physics and radiobiology. Regarding "Environmental research" and environmental conservation, this report describes researches on the characteristics and distribution of aquifer in Ningyo-toge and better geotechnical structure estimation methods. As for "Uranium waste engineering research", the decontamination using ultrasonic cleaning and the elemental analysis of uranium waste are reported. Further, the followings are also reported: the improvement of the radiation management system, the text mining approach for information extraction from safety-related documents, the intake and biological effects of radon, and the behavior of trace elements and radionuclides in the ecosystem of Ningyo-toge. The achievements of those works have been widely presented through research papers etc.

80 (Records 1-80 displayed on this page)
  • 1