Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 9960

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys

Suzudo, Tomoaki; Takamizawa, Hisashi; Nishiyama, Yutaka; Caro, A.*; Toyama, Takeshi*; Nagai, Yasuyoshi*

Journal of Nuclear Materials, 540, p.152306_1 - 152306_10, 2020/11

Spinodal decomposition in thermally aged Fe-Cr alloys leads to significant hardening, which is the direct cause of the so-called 475C-embrittlement. To illustrate how spinodal decomposition induces hardening by atomistic interactions, we conducted a series of numerical simulations as well as reference experiments. The numerical results indicated that the hardness scales linearly with the short-range order (SRO) parameter, while the experimental result reproduced this relationship within statistical error. Both seemingly suggest that neighboring Cr-Cr atomic pairs essentially cause hardening, because SRO is by definition uniquely dependent on the appearance probability of such pairs. A further numerical investigation supported this notion, as it suggests that the dominant cause of hardening is the pinning effect of dislocations passing over such Cr-Cr pairs.

Journal Articles

Estimation of reliable displacements-per-atom based on athermal-recombination-corrected model in radiation environments at nuclear fission, fusion, and accelerator facilities

Iwamoto, Yosuke; Meigo, Shinichiro; Hashimoto, Shintaro

Journal of Nuclear Materials, 538, p.152261_1 - 152261_9, 2020/09

The displacements-per-atom (dpa) is widely used as an exposure unit to predict the operating lifetime of materials in radiation environments. Because the athermal-recombination-corrected dpa (arc-dpa) model is a more realistic model than the standard Norgertt-Robinson-Torrens (NRT) model, new evaluation of radiation damage will be performed using the arc-dpa model as a standard. In this work, the recent arc-dpa model of various materials are incorporated in PHITS, and the rescaling factors (NRT-dpa/arc-dpa) over a wide energy range are reported. For neutron incidences with the energy spectrum determined in selected nuclear facilities and proton incidences with energies of 600 MeV-50 GeV, the rescaling factor for each material is independent of these irradiation conditions with almost the same value for each material. Our findings will be beneficial for rescaling the NRT-dpa model used for radiation damage applications over a wide energy region.

Journal Articles

Analysis of ion-irradiation induced lattice expansion and ferromagnetic state in CeO$$_{2}$$ by using Poisson distribution function

Yamamoto, Yuki*; Ishikawa, Norito; Hori, Fuminobu*; Iwase, Akihiro*

Quantum Beam Science (Internet), 4(3), p.26_1 - 26_13, 2020/09

The lattice constant and the magnetic state of CeO$$_{2}$$ are modified by the irradiation with 200 MeV Xe ions. Under the assumption that these modifications are induced in the narrow one-dimensional region (the ion track) along the ion beam path, the dependence of the lattice constant and the saturation magnetization of CeO$$_{2}$$ on the Xe ion fluence can be analyzed by using the Poisson distribution function. The analysis reveals that the lattice constant inside the ion track, which is larger than outside the ion track is not affected by the overlapping of the ion track. The present result implies that the Poisson distribution function is useful for describing the effect of ion track overlapping on the ion irradiation induced ferromagnetic state in CeO$$_{2}$$.

Journal Articles

Visualizing cation vacancies in Ce:Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$ scintillators by gamma-ray-induced positron annihilation lifetime spectroscopy

Fujimori, Kosuke*; Kitaura, Mamoru*; Taira, Yoshitaka*; Fujimoto, Masaki*; Zen, H.*; Watanabe, Shinta*; Kamada, Kei*; Okano, Yasuaki*; Kato, Masahiro*; Hosaka, Masahito*; et al.

Applied Physics Express, 13(8), p.085505_1 - 085505_4, 2020/08

To clarify the existence of cation vacancies in Ce-doped Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$ (Ce:GAGG) scintillators, we performed gamma-ray-induced positron annihilation lifetime spectroscopy (GiPALS). GiPAL spectra of GAGG and Ce:GAGG comprised two exponential decay components, which were assigned to positron annihilation at bulk and defect states. By an analogy with Ce:Y$$_{3}$$Al$$_{5}$$O$$_{12}$$, the defect-related component was attributed to Al/Ga-O divacancy complexes. This component was weaker for Ce, Mg:GAGG, which correlated with the suppression of shallow electron traps responsible for phosphorescence. Oxygen vacancies were charge compensators for Al/Ga vacancies. The lifetime of the defect-related component was significantly changed by Mg co-doping. This was understood by considering aggregates of Mg$$^{2+}$$ ions at Al/Ga sites with oxygen vacancies, which resulted in the formation of vacancy clusters.

Journal Articles

Introduction to nuclear security, 3; Nuclear material detection technique for nuclear security

Takahashi, Yoshiyuki*; Koizumi, Mitsuo

Nippon Genshiryoku Gakkai-Shi, 62(8), p.452 - 456, 2020/08

no abstracts in English

JAEA Reports

Material balance analysis for wide range of nuclear power generation scenarios

Nishihara, Kenji

JAEA-Data/Code 2020-005, 48 Pages, 2020/07

JAEA-Data-Code-2020-005.pdf:2.95MB
JAEA-Data-Code-2020-005-appendix(CD-ROM).zip:3.62MB

In order to discuss the technological development and human resource development necessary for the future nuclear fuel cycle, various quantitative analyzes were conducted assuming a wide range of future nuclear power generation scenarios. In the evaluation of quantities, the future power generation of LWR and fast reactor, the amount of spent fuel reprocessing, etc. were assumed, and the amount of uranium demand, the accumulation of spent fuel, plutonium, vitrified waste etc. were estimated.

Journal Articles

The Joint evaluated fission and fusion nuclear data library, JEFF-3.3

Plompen, A. J. M.*; Cabellos, O.*; De Saint Jean, C.*; Fleming, M.*; Algora, A.*; Angelone, M.*; Archier, P.*; Bauge, E.*; Bersillon, O.*; Blokhin, A.*; et al.

European Physical Journal A, 56(7), p.181_1 - 181_108, 2020/07

The Joint Evaluated Fission and Fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides $$^{235}$$U, $$^{238}$$U and $$^{239}$$Pu, on $$^{241}$$Am and $$^{23}$$Na, $$^{59}$$Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yileds, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 is excellent for a wide range of nuclear technology applications, in particular nuclear energy.

Journal Articles

FEMAXI-7 analysis for modeling benchmark for FeCrAl

Yamaji, Akifumi*; Susuki, Naomichi*; Kaji, Yoshiyuki

IAEA-TECDOC-1921, p.199 - 209, 2020/07

The thermo-physical models and irradiation behavior of FeCrAl as defined by the benchmark organizer have been implemented to FEMAXI-7. Analyses were carried out firstly for the specified normal operation condition. Then, some sensitivity analyses were carried out with different assumptions and model parameters. Under the normal operating condition, the predicted FeCrAl cladded fuel performance was similar to that of Zry cladded fuel with notable, but not major difference regarding late gap closure. Under the simulated LOCA conditions, the burst pressure could be evaluated. The predicted cladding creep strain at burst was mainly attributed to creep strain with negligible plastic strain. Overall, FEMAXI-7 analyses have demonstrated excellent robustness and flexibility in modeling FeCrAl-UO$$_{2}$$ system under normal and LOCA conditions.

Journal Articles

Development of a combined LES/RANS model to predict atmospheric dispersion over urban areas

Yoshida, Toshiya; Nakayama, Hiromasa

Nippon Keisan Kogakkai Rombunshu (Internet), 2020, p.20200013_1 - 20200013_9, 2020/07

To quickly and accurately predict the dispersion of hazardous materials released over urban areas, we propose a combined method in which dispersion fields are simulated using a Reynolds-averaged Navier-Stokes model with pre-calculated flow fields from a large-eddy simulation (LES) model. First, the combined model is conducted for dispersion in a simple street canyon. The results of the combined model are compared with those of a wind-tunnel experiment to adjust empirical parameters in the turbulent scalar flux. The horizontal dispersion fields predicted in the combined model with the best parameters are well consistent with those calculated from our LES model. We then apply the combined model to predict the scalar dispersion over a real urban area. The combined model well predicts the results obtained from the LES model with less calculation time. Therefore, we find that the combined model is potentially effective for emergency response to hazardous-material release over urban areas.

Journal Articles

First- and second-order topological superconductivity and temperature-driven topological phase transitions in the extended Hubbard model with spin-orbit coupling

Kheirkhah, M.*; Yan, Z.*; Nagai, Yuki; Marsiglio, F.*

Physical Review Letters, 125(1), p.017001_1 - 017001_8, 2020/07

 Times Cited Count:0

no abstracts in English

Journal Articles

Development of a user-friendly interface IRONS for atmospheric dispersion database for nuclear emergency preparedness based on the Fukushima database

El-Asaad, H.*; Nagai, Haruyasu; Sagara, Hiroshi*; Han, C. Y.*

Annals of Nuclear Energy, 141, p.107292_1 - 107292_9, 2020/06

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Atmospheric dispersion simulations can provide crucial information to assess radioactive plumes in the environment for nuclear emergency preparedness. However, it is a difficult and time-consuming task to make simulations assuming many possible scenarios and to derive data from a vast number of results. Therefore, an interface was developed to assist users in conveying characteristics of plumes from simulation results. The interface uses a large database that contains WSPEEDI-II simulations for the first 20-days of radioactive release from the Fukushima Daiichi Nuclear Power Plant, and it displays essential quantitative data to the user from the database. The user may conduct sensitivity analysis with the help of the interface by changing release condition to generate many different case scenarios.

Journal Articles

Ensemble wind simulation using a mesh-refined lattice Boltzmann method

Hasegawa, Yuta; Onodera, Naoyuki; Idomura, Yasuhiro

Dai-25-Kai Nippon Keisan Kogaku Koenkai Rombunshu (CD-ROM), 4 Pages, 2020/06

We developed a GPU-based CFD code using a mesh-refined lattice Boltzmann method (LBM), which enables ensemble simulations for wind and plume dispersion in urban cities. The code is tuned for Pascal or Volta GPU architectures, and is able to perform real-time wind simulations with several kilometers square region and several meters of grid resolution. We examined the developed code against the field experiment JU2003 in Oklahoma City. In the comparison, wind conditions showed good agreements, and the ensemble-averaged and maximum values of tracer concentration satisfied the factor 2 agreements.

Journal Articles

GPU-acceleration of locally mesh allocated Poisson solver

Onodera, Naoyuki; Idomura, Yasuhiro; Ali, Y.*; Shimokawabe, Takashi*; Aoki, Takayuki*

Dai-25-Kai Nippon Keisan Kogaku Koenkai Rombunshu (CD-ROM), 4 Pages, 2020/06

We have developed the stencil-based CFD code JUPITER for simulating three-dimensional multiphase flows. A GPU-accelerated Poisson solver based on the preconditioned conjugate gradient (P-CG) method with a multigrid preconditioner was developed for the JUPITER with block-structured AMR mesh. All Poisson kernels were implemented using CUDA, and the GPU kernel function is well tuned to achieve high performance on GPU supercomputers. The developed multigrid solver shows good convergence of about 1/7 compared with the original P-CG method, and $$times$$3 speed up is achieved with strong scaling test from 8 to 216 GPUs on TSUBAME 3.0.

Journal Articles

Atmospheric-dispersion database system that can immediately provide calculation results for various source term and meteorological conditions

Terada, Hiroaki; Nagai, Haruyasu; Tanaka, Atsunori*; Tsuzuki, Katsunori; Kadowaki, Masanao

Journal of Nuclear Science and Technology, 57(6), p.745 - 754, 2020/06

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

We have estimated source term and analyzed processes of atmospheric dispersion of radioactive materials released during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident by the Worldwide version of System for Environmental Emergency Dose Information. On the basis of this experience, we developed an dispersion calculation method that can respond to various needs in a nuclear emergency and provide useful information for emergency-response planning. By this method, if a release point is known, it is possible to immediately obtain the prediction results by applying provided source term to the database of dispersion-calculation results prepared in advance. With this function, it is easy to compare results by applying various source term with monitoring data, and to find out the optimum source term, which was applied for the source term estimation of the FDNPS accident. By performing this calculation with past meteorological-analysis data, it is possible to immediately get dispersion-calculation results for various source term and meteorological conditions. This database can be used for pre-accident planning, such as optimization of a monitoring plan and understanding of events to be supposed in considering emergency countermeasures.

Journal Articles

Journal Articles

Numerical simulation of two-phase flow in 4$$times$$4 simulated bundle

Ono, Ayako; Yamashita, Susumu; Suzuki, Takayuki*; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 7(3), p.19-00583_1 - 19-00583_12, 2020/06

JAEA is implementing the 3D detailed nuclear-thermal-coupled analysis code to analyze the transition state of the core and to reduce the likelihood of the design. In the development plan, the computational fluid dynamics code based on the VOF method, JUPITER, is applied for TH part of the 3D detailed nuclear-thermal-coupled analysis code.

Journal Articles

Observation of aerosol particle capturing behavior near gas-liquid interface

Uesawa, Shinichiro; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 7(3), p.19-00539_1 - 19-00539_9, 2020/06

Journal Articles

Two-parameter model for optimizing target beam distribution with an octupole magnet

Meigo, Shinichiro; Oi, Motoki; Fujimori, Hiroshi*

Physical Review Accelerators and Beams (Internet), 23(6), p.062802_1 - 062802_24, 2020/06

 Times Cited Count:0

As hadron accelerators for such as the ADS and spallation neutron source achieve increasing beam power, damage to targets is becoming increasingly severe. To mitigate this damage, nonlinear beam optics based on octupole magnets is attractive. Nonlinear optics can decrease the beam-focusing hazard due to failure of the rastering magnet. As a side effect of nonlinear optics, the beam size is known to expand drastically compared with linear optics. Nonlinear effects have been studied via a simplified filament model that ignores beam-divergence spread at the octupole magnet. In this study, a new generalized model is proposed for application to an octupole magnet, regardless of the filament-model approximation. It is found that the transverse distribution obtained by beam tracking can be specified by the introduction of only two parameters, namely the normalized octupole strength of $$K^{*}_8$$ and the $$cot phi$$ of the phase advance. To achieve the two antagonistic requirements of reduction of the beam-peak density and minimization of the beam loss, the transverse distribution is surveyed for a large range of beam position. It is found that a bell-shaped distribution with $$K^{*}_8 sim$$ 1 and $$cot phi sim$$ 3 can satisfy requirements. This result is applied to beam transport in the spallation neutron source at J-PARC. The calculation result given by the present model shows good agreement with the experimental data, and the peak current density is reduced by 50% compared with the linear-optics case.

Journal Articles

Spallation and fragmentation cross sections for 168 MeV/nucleon $$^{136}$$Xe ions on proton, deuteron, and carbon targets

Sun, X. H.*; Wang, H.*; Otsu, Hideaki*; Sakurai, Hiroyoshi*; Ahn, D. S.*; Aikawa, Masayuki*; Fukuda, Naoki*; Isobe, Tadaaki*; Kawakami, Shunsuke*; Koyama, Shumpei*; et al.

Physical Review C, 101(6), p.064623_1 - 064623_12, 2020/06

 Times Cited Count:0

The spallation and fragmentation reactions of $$^{136}$$Xe induced by proton, deuteron and carbon at 168 MeV/nucleon were studied at RIKEN Radioactive Isotope Beam Factory via the inverse kinematics technique. The cross sections of the lighter products are larger in the carbon-induced reactions due to the higher total kinetic energy of carbon. The energy dependence was investigated by comparing the newly obtained data with previous results obtained at higher reaction energies. The experimental data were compared with the results of SPACS, EPAX, PHITS and DEURACS calculations. These data serve as benchmarks for the model calculations.

Journal Articles

Complexation and bonding studies on [Ru(NO)(H$$_{2}$$O)$$_{5}$$]$$^{3+}$$ with nitrate ions by using density functional theory calculation

Kato, Akane*; Kaneko, Masashi; Nakashima, Satoru*

RSC Advances (Internet), 10(41), p.24434 - 24443, 2020/06

 Times Cited Count:0

Complexation reactions of ruthenium-nitrosyl complexes in HNO$$_{3}$$ solution were investigated by density functional theory (DFT) calculations in order to predict the stability of Ru species in high-level radioactive liquid waste (HLLW) solution. Equilibrium structure of [Ru(NO)(NO$$_{3}$$)$$_{3}$$(H$$_{2}$$O)$$_{2}$$] obtained by DFT calculations reproduced the experimental Ru-ligands bond lengths and IR frequencies reported previously. Comparison of the Gibbs energies among the geometrical isomers revealed that the complexation reactions of the ruthenium-nitrosyl complexes with NO$$_{3}$$$$^{-}$$ proceed via the NO$$_{3}$$$$^{-}$$ coordination to the equatorial plane toward the Ru-NO axis. We also estimated Gibbs energy differences on the stepwise complexation reactions to succeed in reproducing the fraction of Ru-NO species in 6 M HNO$$_{3}$$ solution, such as in HLLW, by considering the association energy between the Ru-NO species and the substituting ligands. Electron density analyses of the complexes indicated that the strength of the Ru-ligands coordination bonds depends on the stability of the Ru species and the Ru complex without NO$$_{3}$$$$^{-}$$ at the axial position is more stable than that wit NO$$_{3}$$$$^{-}$$, which might attribute to the difference in the trans influence between H$$_{2}$$O and NO$$_{3}$$$$^{-}$$. Finally, we demonstrated the complexation kinetics in the reactions $$x = 1 rightarrow x = 2$$. The present study is expected to enable us to model the precise complexation reactions of platinum-group metals in HNO$$_{3}$$ solution.

9960 (Records 1-20 displayed on this page)