Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Kimura, Atsushi; Nakamura, Shoji; Terada, Kazushi*; Nakao, Taro*; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.

Journal of Nuclear Science and Technology, 56(6), p.479 - 492, 2019/06

Idomura, Yasuhiro; Watanabe, Tomohiko*; Todo, Yasushi*

Shimyureshon, 38(2), p.79 - 86, 2019/06

We promote the research and development of exascale fusion plasma simulations on Post-K towards estimation and prediction of core plasma performance, and exploration of improved operation scenarios on the next generation fusion experimental reactor ITER. In this paper, we review developed exascale simulation technologies and outcomes from validation studies on existing experimental devices, and discuss perspectives on exascale fusion plasma simulations on Post-K.

Asahi, Yuichi*; Grandgirard, V.*; Sarazin, Y.*; Donnel, P.*; Garbet, X.*; Idomura, Yasuhiro; Dif-Pradalier, G.*; Latu, G.*

Plasma Physics and Controlled Fusion, 61(6), p.065015_1 - 065015_15, 2019/05

Percentile：100The role of poloidal convective cells on transport processes is studied with the full-F gyrokinetic code GYSELA. For this purpose, we apply a numerical filter to convective cells and compare the simulation results with and without the filter. The energy flux driven by the magnetic drifts turns out to be reduced by a factor of about 2 once the numerical filter is applied. A careful analysis reveals that the frequency spectrum of the convective cells is well-correlated with that of the turbulent Reynolds stress tensor, giving credit to their turbulence-driven origin. The impact of convective cells can be interpreted as a synergy between turbulence and neoclassical dynamics.

Aihara, Jun; Honda, Masaki*; Ueta, Shohei; Ogawa, Hiroaki; Ohira, Koichi*; Tachibana, Yukio

Nippon Genshiryoku Gakkai Wabun Rombunshi, 18(1), p.29 - 36, 2019/03

Japan Atomic Energy Agency carried out development of fabrication technology of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors in serious oxidation accident, based on precursor research in former JAEA. Dummy coated fuel particles (alumina particles) were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter dummy oxidation resistant fuel elements with SiC/C mixed matrix. We fabricated dummy oxidation resistant fuel elements with matrix whose Si/C mole ratio (about 0.551) is three times as large as that in precursor research. Si peak was not detected by X-ray diffraction of matrix. Better oxidation resistant was confirmed with oxidation test in 20% O at 1673 K than that of ordinal fuel compact with ordinal graphite/carbon matrix. All dummy coated fuel particles were held in specimen after 10 h oxidation.

Maeyama, Shinya*; Watanabe, Tomohiko*; Idomura, Yasuhiro; Nakata, Motoki*; Nunami, Masanori*

Computer Physics Communications, 235, p.9 - 15, 2019/02

Percentile：100(Computer Science, Interdisciplinary Applications)We have implemented the Sugama collision operator in the gyrokinetic Vlasov simulation code, GKV, with an implicit time-integration scheme. The new method is versatile and independent of the details of the linearized collision operator, by means of an operator splitting, an implicit time integrator, and an iterative Krylov subspace solver. Numerical tests demonstrate stable computation over the time step size restricted by the collision term. An efficient implementation for parallel computation on distributed memory systems is realized by using the data transpose communication, which makes the iterative solver free from inter-node communications during iteration. Consequently, the present approach achieves enhancement of computational efficiency and reduction of computational time to solution simultaneously, and significantly accelerates the total performance of the application.

Ando, Masaki; Mikami, Satoshi; Tsuda, Shuichi; Yoshida, Tadayoshi; Matsuda, Norihiro; Saito, Kimiaki

Journal of Environmental Radioactivity, 192, p.385 - 398, 2018/12

Percentile：100(Environmental Sciences)Car-borne surveys using KURAMA systems have been conducted over a wide area in eastern Japan since 2011. The measurement data collected until 2016 was analyzed, and decreasing trend of the dose rates in regions within 80 km of Fukushima Dai-ichi Nuclear Power Plant were examined. The averaged dose rates tended to decrease considerably with respect to the physical decay of radiocaesium, and the ecological half-lives of the fast and slow decay components were estimated. The decrease of the dose rate in the forest was slower than its decrease in other regions, and the decrease of the dose rate in urban area was the fastest. The decrease in the dose rates obtained via the car-borne survey was larger than that obtained on flat ground with few disturbances using survey meters approximately 1.5 y after the accident; hereafter, the decrease in the dose rates obtained via the car-borne survey was same as the latter measurement.

Oikawa, Kenichi; Su, Y.; Kiyanagi, Ryoji; Kawasaki, Takuro; Shinohara, Takenao; Kai, Tetsuya; Hiroi, Kosuke; Harjo, S.; Parker, J. D.*; Matsumoto, Yoshihiro*; et al.

Physica B; Condensed Matter, 551, p.436 - 442, 2018/12

Percentile：100(Physics, Condensed Matter)Hiroi, Kosuke; Shinohara, Takenao; Hayashida, Hirotoshi*; Parker, J. D.*; Su, Y.; Oikawa, Kenichi; Kai, Tetsuya; Kiyanagi, Yoshiaki*

Physica B; Condensed Matter, 551, p.146 - 151, 2018/12

Times Cited Count：1 Percentile：100(Physics, Condensed Matter)Hiroi, Kosuke; Shinohara, Takenao; Hayashida, Hirotoshi*; Parker, J. D.*; Oikawa, Kenichi; Su, Y.; Kai, Tetsuya; Kiyanagi, Yoshiaki*

JPS Conference Proceedings (Internet), 22, p.011030_1 - 011030_7, 2018/11

Suzuki, Yoshio; Iigaki, Kazuhiko

JAEA-Data/Code 2018-009, 41 Pages, 2018/09

Toward Verification & Validation (V&V) of a seismic simulation of entire nuclear plant, an approach to estimate errors included in observed acceleration data is proposed. On the comparison between simulation results and experimental/observational results in the process of V&V, errors which might be included in experimental/observational data should be estimated. It is considered that there exist following two causes for errors in observed acceleration data; measurement accuracy of an accelerometer measurement system and disturbance included in measured data. Techniques based on the specification of an accelerometer measurement system and the time series analysis are respectively adopted to estimate those errors. To clarify the actual procedure, those techniques are applied to acceleration data observed at High Temperature engineering Test Reactor (HTTR) at the Oarai Research and Development Institute of Japan Atomic Energy Agency.

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Yamamoto, Takahiro*

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B; Mechanical Engineering, 4(3), p.030902_1 - 030902_9, 2018/09

This paper describes volcanic probabilistic risk assessment (PRA) methodology development for sodium-cooled fast reactors. The volcanic ash could potentially clog air filters of air-intakes that are essential for the decay heat removal. The degree of filter clogging can be calculated by atmospheric concentration of ash and tephra fallout duration and also suction flow rate of each component. The atmospheric concentration can be calculated by deposited tephra layer thickness, tephra fallout duration and fallout speed. This study evaluated a volcanic hazard using a combination of tephra fragment size, layer thickness and duration. In this paper, each component functional failure probability was defined as a failure probability of filter replacement obtained by using a grace period to a filter failure limit. Finally, based on an event tree, a core damage frequency was estimated about 310/year in total by multiplying discrete hazard probabilities by conditional decay heat removal failure probabilities. A dominant sequence was led by the loss of decay heat removal system due to the filter clogging after the loss of emergency power supply. In addition, sensitivity analyses have investigated the effects of a tephra arrival reduction factor and pre-filter covering.

Oizumi, Akito; Fukushima, Masahiro; Tsujimoto, Kazufumi; Yamanaka, Masao*; Sano, Tadafumi*; Pyeon, C. H.*

KURRI Progress Report 2017, P. 50, 2018/08

In the nuclear transmutation system such as ADS, the nuclear data validation of MA is required to reduce the uncertainty caused by the nuclear data of MA. This study aims to measure the reaction rates of Neptunium-237 (Np) and Americium-241 (Am) using the nuclear spallation neutron source in the KUCA for 3 hours. The observed distributions of pulse-height of Np and Am fission reactions were significantly different from the ones generally observed in critical and pulsed neutron source (PNS) experiments because of the influence of the -ray generated by the nuclear spallation reaction. On the other hand, the capture reaction rate of Np was measured in this experiment. The capture reaction rate of the critical experiment which was available to be measured the fission reaction rate of Np and Am was almost 8 times larger than that of this experiment. Consequently, reducing the influence of the generated by the nuclear spallation reaction and extending the duration of the irradiation to 24 or more hours would be necessary for detecting signals of fission reactions under the spallation neutron source.

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi

Mechanical Engineering Journal (Internet), 5(4), p.18-00093_1 - 18-00093_19, 2018/08

This paper describes the development of a probabilistic risk assessment (PRA) methodology against a combination hazard of strong wind and rainfall. In this combination hazard PRA, a hazard curve is evaluated in terms of maximum instantaneous wind speed, hourly rainfall, and rainfall duration. A scenario analysis has provided event sequences resulting from the combination hazard of strong wind and rainfall. The typical event sequence was characterized by the function loss of auxiliary cooling system, of which heat transfer tubes could crack due to cycle fatigue caused by cyclic contacts with rain droplets. This cycle fatigue crack could occur if rain droplets enter into the air cooler of the system following the coolers roof failure due to strong-wind-generated missile impact. This event sequence has been incorporated into an event tree which addresses component failure caused by the combination hazard. As a result, a core damage frequency has been estimated to be about 10/year in total by multiplying discrete hazard frequencies by conditional decay heat removal failure probabilities. The dominant sequence is the manual operation failure of an air cooler damper following the failure of external fuel tank due to the missile impact. The dominant hazard is the maximum instantaneous wind speed of 20-40 m/s, the hourly rainfall of 20-40 mm/h, and the rainfall duration of 0-10 h.

Nishida, Akemi; Choi, B.; Yamano, Hidemasa; Takada, Tsuyoshi*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 11 Pages, 2018/07

This study identified and quantified possible cliff edge effects through a seismic safety evaluation of a nuclear power plant, based on the concepts of risk and defense in depth. Cliff edges of the both physical and knowledge-based type were considered in this study. We investigated a seismic isolation effect, etc., for physical cliff edges, and the modeling of the target structure, boundary conditions, etc., for knowledge-based cliff edges. Response analysis was performed using a sway-rocking (SR) model and a three-dimensional model of the target building. The seismic isolation effect of the base-isolated building was confirmed by comparison to the results of earthquake-resistant building. In the case of a collision with the retaining wall of the base-isolated building, the level of damage was found to depend on the modeling of the collision condition assumed. On the other hand, the study confirmed the differences between the results from the SR model and the three-dimensional model.

Sugawara, Takanori; Eguchi, Yuta; Obayashi, Hironari; Iwamoto, Hiroki; Matsuda, Hiroki; Tsujimoto, Kazufumi

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 10 Pages, 2018/07

A new beam window concept for accelerator-driven system (ADS) is investigated by changing the design condition. The most important factor for the beam window design is the proton beam current. The design condition will be mitigated if the proton beam current will be reduced. To reduce the proton beam current, a subcriticality adjustment rod (SAR) which was a BC control rod was employed and neutronics calculations were performed by ADS3D code. The results of the neutronics calculation indicated that the proton beam current was reduced from 20mA to 13.5mA by the installation of SARs. Based on the mitigated calculation condition, the investigation of the beam window was performed by the couple analyses of the particle transport, the thermal hydraulics and the structural analysis. Through these coupled analyses, more feasible beam window concept which was the hemispherical shape, the outer diameter = 470mm, the thickness at the top = 3.5mm and factor of safety =9 was presented.

Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke*

Physics of Plasmas, 25(2), p.022510_1 - 022510_10, 2018/02

Times Cited Count：1 Percentile：53.13(Physics, Fluids & Plasmas)Global full-f gyrokinetic simulations, in which the gyrokinetic equation is solved based on the first principle without the scale separation with respect to the plasma distribution function, is attracting much attention in the plasma transport simulation studies. In this work, in order to apply a global full-f gyrokinetic simulation code GT5D to stellarator plasmas with complicated three-dimensional magnetic field configurations, we extend finite difference scheme of GT5D and develop a new interface code which incorporates the three-dimensional magnetic equilibria provided by a standard equilibrium code, VMEC. A series of benchmark calculations are carried out for the numerical verification of GT5D. It is successfully demonstrated that GT5D well reproduces results of a theoretical analysis and another global neoclassical transport code.

Mizuyama, Kazuhito; Iwamoto, Nobuyuki; Iwamoto, Osamu; Terada, Kazushi; Nakao, Taro

JAEA-Conf 2017-001, p.163 - 168, 2018/01

Nishio, Katsuhisa; Hirose, Kentaro; Lguillon, R.*; Makii, Hiroyuki; Orlandi, R.; Tsukada, Kazuaki; Smallcombe, J.*; Chiba, Satoshi*; Aritomo, Yoshihiro*; Tanaka, Shoya*; et al.

Proceedings of 6th International Conference on Fission and Properties of Neutron-rich Nuclei (ICFN-6), p.590 - 597, 2017/11

Idomura, Yasuhiro; Ina, Takuya*; Mayumi, Akie; Yamada, Susumu; Matsumoto, Kazuya*; Asahi, Yuichi*; Imamura, Toshiyuki*

Proceedings of 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2017), p.7_1 - 7_8, 2017/11

A communication-avoiding generalized minimal residual (CA-GMRES) method is applied to the gyrokinetic toroidal five dimensional Eulerian code GT5D, and its performance is compared against the original code with a generalized conjugate residual (GCR) method on the JAEA ICEX (Haswell), the Plasma Simulator (FX100), and the Oakforest-PACS (KNL). The CA-GMRES method has higher arithmetic intensity than the GCR method, and thus, is suitable for future Exa-scale architectures with limited memory and network bandwidths. In the performance evaluation, it is shown that compared with the GCR solver, its computing kernels are accelerated by , and the cost of data reduction communication is reduced from to of the total cost at 1,280 nodes.

Asahi, Yuichi*; Grandgirard, V.*; Idomura, Yasuhiro; Garbet, X.*; Latu, G.*; Sarazin, Y.*; Dif-Pradalier, G.*; Donnel, P.*; Ehrlacher, C.*

Physics of Plasmas, 24(10), p.102515_1 - 102515_17, 2017/10

Percentile：100(Physics, Fluids & Plasmas)Two full-F global gyrokinetic codes are benchmarked to compute flux-driven ion temperature gradient turbulence in tokamak plasmas. For this purpose, the Semi-Lagrangian code GYSELA and the Eulerian code GT5D are employed, which solve the full-F gyrokinetic equation with a realistic fixed flux condition. Using the appropriate settings for the boundary and initial conditions, flux-driven ITG turbulence simulations are carried out. The avalanche-like transport is assessed with a focus on spatio-temporal properties. A statistical analysis is performed to discuss this self-organized criticality (SOC) like behaviors, where we found spectra and a transition to spectra at high-frequency side in both codes. Based on these benchmarks, it is verified that the SOC-like behavior is robust and not dependent on numerics.