Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 2008

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Influences of the ZrC coating process and heat treatment on ZrC-coated kernels used as fuel in Pu-burner high temperature gas-cooled reactor in Japan

Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Mizuta, Naoki; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*

Journal of Nuclear Science and Technology, 58(1), p.107 - 116, 2021/01

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

The concept of a Pu-burner high temperature gas-cooled reactor (HTGR) has been proposed for purpose of more safely reducing amount of recovered Pu. This concept employs coated fuel particles (CFPs) with ZrC coated PuO$$_{2}$$-YSZ kernel and with tristructural (TRISO) coating for very high Pu burn-up and high nuclear proliferation resistance. In this report, we investigate the microstructure of the region that includes the surface of an as-fabricated CeO$$_{2}$$-YSZ kernel simulating PuO$$_{2}$$-YSZ kernel. We found both Zr-rich grains and Ce-rich grains to be densely distributed in that region including surface of CeO$$_{2}$$-YSZ kernel. On the other hand, it has been reported that there was a porous region near surface of the CeO$$_{2}$$-YSZ kernel of Batch I. This finding confirms that Ce-rich grains near surface of CeO$$_{2}$$-YSZ kernels coated with ZrC layers have been corroded during the deposition of the ZrC layer, whereas the Zr-rich grains were hardly affected.

Journal Articles

Acceleration of fusion plasma turbulence simulation on Fugaku and Summit

Idomura, Yasuhiro; Ina, Takuya*; Ali, Y.*; Imamura, Toshiyuki*

Dai-34-Kai Suchi Ryutai Rikigaku Shimpojiumu Koen Rombunshu (Internet), 6 Pages, 2020/12

A new communication avoiding (CA) Krylov solver with a FP16 (half precision) preconditioner is developed for a semi-implicit finite difference solver in the Gyrokinetic Toroidal 5D full-f Eulerian code GT5D. In the solver, the bottleneck of global collective communication is resolved using a CA-Krylov subspace method, and halo data communication is reduced by the FP16 preconditioner, which improves the convergence property. The FP16 preconditioner is designed based on the physics properties of the operator and is implemented using the new support for FP16 SIMD operations on A64FX. The solver is ported also on GPUs, and the performance of ITER size simulations with $$sim 0.1$$ trillion grids is measured on Fugaku (A64FX) and Summit (V100). The new solver accelerates GT5D by $$2 sim3times$$ from the conventional non-CA solver, and excellent strong scaling is obtained up to 5,760 CPUs/GPUs both on Fugaku and Summit.

Journal Articles

Experiments of self-wastage phenomena elucidation in steam generator tube of sodium-cooled fast reactor

Umeda, Ryota; Shimoyama, Kazuhito; Kurihara, Akikazu

Nippon Genshiryoku Gakkai Wabun Rombunshi, 19(4), p.234 - 244, 2020/12

Sodium-water reaction caused by failure of the steam generator tube of sodium-cooled fast reactor induce the wastage phenomenon, which has erosive and corrosive feature. In this report, the authors have performed the self-wastage experiments under high sodium temperature condition to evaluate the effect of wastage form/geometry by using two types of initial defect such as the micro fine pinhole and fatigue crack, and water leak rate on self-wastage rate. Based on the consideration of crack type influence, it was confirmed that self-wastage rate did not strongly depend on the initial defect geometry. As a mechanism of the self-plug phenomenon, it is speculated that sodium oxide intervenes and inhibits the progress of self-wastage. The dependence of initial sodium temperature on self-wastage rate was clearly observed, and new self-wastage correlation was derived considering the initial sodium temperature.

Journal Articles

Flexible fuel cycle system for the effective management of plutonium

Fukasawa, Tetsuo*; Hoshino, Kuniyoshi*; Yamashita, Junichi*; Takano, Masahide

Journal of Nuclear Science and Technology, 57(11), p.1215 - 1222, 2020/11

The flexible fuel cycle initiative system (FFCI system) has been developed to reduce spent fuel (SF) amounts, to keep high availability factor for the reprocessing plant and to increase the proliferation resistance for the recovered Pu. The system separates most U from the SF at first, and the residual material called recycle material (RM) which contains Pu, minor actinides, fission products and remaining U will go to Pu(+U) recovery from the RM for Pu utilizing reactor in future. The Pu utilizing reactor is FBR or LWR with MOX fuel. The RM is the buffer material between SF reprocessing and Pu utilizing reactor with compact size and high proliferation resistance, which can suppress the amount of relatively pure Pu. The innovative technologies of FFCI are most U separation and temporary RM storage. They are investigated by the literature survey, fundamental experiments using simulated material and analyses using simulation code. This paper summarizes the feasibility confirmation results of FFCI.

Journal Articles

Acceleration of fusion plasma turbulence simulations using the mixed-precision communication-avoiding Krylov method

Idomura, Yasuhiro; Ina, Takuya*; Ali, Y.*; Imamura, Toshiyuki*

Proceedings of International Conference on High Performance Computing, Networking, Storage, and Analysis (SC 2020) (Internet), p.1318 - 1330, 2020/11

The multi-scale full-$$f$$ simulation of the next generation experimental fusion reactor ITER based on a five dimensional (5D) gyrokinetic model is one of the most computationally demanding problems in fusion science. In this work, a Gyrokinetic Toroidal 5D Eulerian code (GT5D) is accelerated by a new mixed-precision communication-avoiding (CA) Krylov method. The bottleneck of global collective communication on accelerated computing platforms is resolved using a CA Krylov method. In addition, a new FP16 preconditioner, which is designed using the new support for FP16 SIMD operations on A64FX, reduces both the number of iterations (halo data communication) and the computational cost. The performance of the proposed method for ITER size simulations with 0.1 trillion grids on 1,440 CPUs/GPUs on Fugaku and Summit shows 2.8x and 1.9x speedups respectively from the conventional non-CA Krylov method, and excellent strong scaling is obtained up to 5,760 CPUs/GPUs.

Journal Articles

Evaluation of gamma-ray strength function based on measured gamma-ray pulse-height spectra in time-of-flight neutron capture experiments

Iwamoto, Nobuyuki; Nakamura, Shoji; Kimura, Atsushi; Katabuchi, Tatsuya*; Rovira, G.*; Hara, Kaoru*; Iwamoto, Osamu

EPJ Web of Conferences, 239, p.17016_1 - 17016_4, 2020/09

Journal Articles

Fast neutron capture reaction data measurement of minor actinides for development of nuclear transmutation systems

Katabuchi, Tatsuya*; Iwamoto, Osamu; Hori, Junichi*; Kimura, Atsushi; Iwamoto, Nobuyuki; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*; Rovira, G.*; Matsuura, Shota*

EPJ Web of Conferences, 239, p.01044_1 - 01044_4, 2020/09

Journal Articles

Structural characterization of Eu-HONTA complexes by IBIL and EXAFS analyses

Watanabe, So; Sano, Yuichi; Okada, Makoto*; Matsuura, Haruaki*; Hagura, Naoto*; Kada, Wataru*

Nuclear Instruments and Methods in Physics Research B, 477, p.60 - 65, 2020/08

 Times Cited Count:0 Percentile:100(Instruments & Instrumentation)

IBIL and EXAFS analyses were applied on strucutral analysis of Eu complex formed in adsorbent developed for extraction chromatography. Those analyses revealed slight structural difference between adsorbent and solvent systems.

Journal Articles

Self-organization of zonal flows and isotropic eddies in toroidal electron temperature gradient driven turbulence

Kawai, Chika*; Idomura, Yasuhiro; Ogawa, Yuichi*; Yamada, Hiroshi*

Physics of Plasmas, 27(8), p.082302_1 - 082302_11, 2020/08

 Times Cited Count:0 Percentile:100(Physics, Fluids & Plasmas)

Self-organization in the toroidal electron temperature gradient driven (ETG) turbulence is investigated based on a global gyrokinetic model in a weak magnetic shear configuration. Because of global profile effects, toroidal ETG modes with higher toroidal mode number n are excited at the outer magnetic surfaces, leading to strong linear wave dispersion. The resulting anisotropic wave turbulence boundary and the inverse energy cascade generate the self-organization of zonal flows, which is the unique mechanism in the global gyrokinetic model. The self-organization is confirmed both in the decaying turbulence initialized by random noises and in the toroidal ETG turbulence. It is also shown that the self-organization process generates zonal flows and isotropic eddies depending on a criterion parameter, which is determined by the ion to electron temperature ratio and the turbulence intensity.

Journal Articles

Development of ex-vessel phenomena analysis model for multi-scenario simulation system, spectra

Uchibori, Akihiro; Aoyagi, Mitsuhiro; Takata, Takashi; Ohshima, Hiroyuki

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

The multi-scenario simulation system named SPECTRA has been developed for integrated analysis of in- and ex-vessel phenomena during a severe accident in sodium-cooled fast reactors. The base module computing ex-vessel compressible gas behavior by a lumped mass model and a sodium-concrete interaction module were verified through the basic analyses individually. A validity of the system including the base module and the individual physical module such as the sodium-concrete interaction module was confirmed through the analysis assuming sodium leakage from a reactor vessel and a primary cooling loop.

Journal Articles

Geographical distribution of ground deposition density and ambient dose rate, and temporal change of dose rate

Saito, Kimiaki

Tokyo Denryoku Fukushima Daiichi Genshiryoku Hatsudensho Jiko Ni Yoru Kankyo Osen No Kenkyu Chosa No Shinten To Kadai (Internet), p.8 - 10, 2020/07

no abstracts in English

Journal Articles

Sodium fire models for in- and ex-vessel safety analysis code SPECTRA

Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki

Transactions of the American Nuclear Society, 122(1), p.862 - 865, 2020/06

Development of a new simulation system SPECTRA has been started to enable a simulation of comprehensive in- and ex-vessel events during a severe accident in a sodium-cooled fast reactor. The simulation system SPECTRA consists of two basic modules of thermal-hydraulics; in-vessel basic module and ex-vessel one, and some sub-modules for specific phenomena or events. A sodium fire models are implemented as one sub-module of the ex-vessel module. The sodium fire models are adapted from existing sodium fire analysis codes AQUA-SF and SPHINCS. As the result of verification test, the results show good agreement with the one of original codes. The validation analysis for single droplet falling and combustion corresponds well with the experimental data reasonably.

Journal Articles

Corrosion monitoring in humidity-controlled environment simulating gamma ray irradiation

Omori, Atsushi*; Akiyama, Eiji*; Abe, Hiroshi*; Hata, Kuniki; Sato, Tomonori; Kaji, Yoshiyuki; Inoue, Hiroyuki*; Taguchi, Mitsumasa*; Seito, Hajime*; Tada, Eiji*; et al.

Zairyo To Kankyo, 69(4), p.107 - 111, 2020/04

To evaluate the effect of oxidants, which are formed by radiolysis of water under gamma ray irradiation, on the corrosion of a carbon steel in humid environment, ozone was introduced as a model oxidant in to humidity-controlled air at 50$$^{circ}$$C in a thermo-hygrostat chamber. Corrosion monitoring was performed by using an Atmospheric Corrosion Monitor-type (ACM) sensor consisting of a carbon steel anode and an Ag cathode. The output current of the ACM sensor was increased with the increase in relative humidity and it was obviously increased with the increase in the introduced ozone concentration at each relative humidity. The results indicate that ozone accelerates the corrosion of the carbon steel. The effect of ozone on the corrosion acceleration is attributed to the fast reduction reaction and fast dissolution reaction in to water compared to that of oxygen.

Journal Articles

Overlapping communications in gyrokinetic codes on accelerator-based platforms

Asahi, Yuichi*; Latu, G.*; Bigot, J.*; Maeyama, Shinya*; Grandgirard, V.*; Idomura, Yasuhiro

Concurrency and Computation; Practice and Experience, 32(5), p.e5551_1 - e5551_21, 2020/03

 Times Cited Count:0 Percentile:100(Computer Science, Software Engineering)

Two five-dimensional gyrokinetic codes GYSELA and GKV were ported to the modern accelerators, Xeon Phi KNL and Tesla P100 GPU. Serial computing kernels of GYSELA on KNL and GKV on P100 GPU were respectively 1.3x and 7.4x faster than those on a single Skylake processor. Scaling tests of GYSELA and GKV were respectively performed from 16 to 512 KNLs and from 32 to 256 P100 GPUs, and data transpose communications in semi-Lagrangian kernels in GYSELA and in convolution kernels in GKV were found to be main bottlenecks, respectively. In order to mitigate the communication costs, pipeline-based and task-based communication overlapping were implemented in these codes.

Journal Articles

Summary of temporal changes in air dose rates and radionuclide deposition densities in the 80 km zone over five years after the Fukushima Nuclear Power Plant accident

Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Yoshida, Tadayoshi; Sato, Tetsuro*; Seki, Akiyuki; Yamamoto, Hideaki*; et al.

Journal of Environmental Radioactivity, 210, p.105878_1 - 105878_12, 2019/12

 Times Cited Count:7 Percentile:17.93(Environmental Sciences)

Journal Articles

Development of fabrication and inspection technologies for oxidation-resistant fuel element for high-temperature gas-cooled reactors

Aihara, Jun; Yasuda, Atsushi*; Ueta, Shohei; Ogawa, Hiroaki; Honda, Masaki*; Ohira, Koichi*; Tachibana, Yukio

Nippon Genshiryoku Gakkai Wabun Rombunshi, 18(4), p.237 - 245, 2019/12

Development of fabrication and inspection technologies of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors (HTGRs) in severe oxidation accident was carried out. Simulated coated fuel particles (CFPs), alumina particles, were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter simulated oxidation resistant fuel elements with SiC/C mixed matrix. Simulated oxidation resistant fuel elements with matrix whose Si/C mole ratio is 1.00 were fabricated. Failure fraction of CFPs in fuel elements is one of very important inspection subjects of HTGR fuel. It is essential that CFPs are extracted from fuel elements without additional failure. Development of method for extraction of CFPs was carried out. Desolation of SiC by KOH method or pressurized acidolysis method should be applied to extraction of CFPs.

Journal Articles

Isotope and plasma size scaling in ion temperature gradient driven turbulence

Idomura, Yasuhiro

Physics of Plasmas, 26(12), p.120703_1 - 120703_5, 2019/12

 Times Cited Count:1 Percentile:72.04(Physics, Fluids & Plasmas)

This Letter presents the impacts of the hydrogen isotope mass and the normalized gyroradius $$rho^*$$ on L-mode like hydrogen (H) and deuterium (D) plasmas dominated by ion temperature gradient driven (ITG) turbulence using global full-f gyrokinetic simulations. In ion heated numerical experiments with adiabatic electrons, the energy confinement time shows almost no isotope mass dependency, and is determined by Bohm like $$rho^*$$ scaling. Electron heated numerical experiments with kinetic electrons show clear isotope mass dependency caused by the isotope effect on the collisional energy transfer from electrons to ions, and the H and D plasmas show similar ion and electron temperature profiles at an H to D heating power ratio of $$sim 1.4$$. The normalized collisionless ion gyrokinetic equations for H and D plasmas become identical at the same $$rho^*$$, and collisions weakly affect ITG turbulence. Therefore, the isotope mass dependency is mainly contributed by the $$rho^*$$ scaling and the heating sources.

Journal Articles

Neutron capture reaction data measurement of minor actinides in fast neutron energy region for study on nuclear transmutation system

Katabuchi, Tatsuya*; Iwamoto, Osamu; Hori, Junichi*; Iwamoto, Nobuyuki; Kimura, Atsushi; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*

JAEA-Conf 2019-001, p.193 - 197, 2019/11

Journal Articles

GPU acceleration of communication avoiding Chebyshev basis conjugate gradient solver for multiphase CFD simulations

Ali, Y.*; Onodera, Naoyuki; Idomura, Yasuhiro; Ina, Takuya*; Imamura, Toshiyuki*

Proceedings of 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2019), p.1 - 8, 2019/11

 Times Cited Count:3 Percentile:1.37

Iterative methods for solving large linear systems are common parts of computational fluid dynamics (CFD) codes. The Preconditioned Conjugate Gradient (P-CG) method is one of the most widely used iterative methods. However, in the P-CG method, global collective communication is a crucial bottleneck especially on accelerated computing platforms. To resolve this issue, communication avoiding (CA) variants of the P-CG method are becoming increasingly important. In this paper, the P-CG and Preconditioned Chebyshev Basis CA CG (P-CBCG) solvers in the multiphase CFD code JUPITER are ported to the latest V100 GPUs. All GPU kernels are highly optimized to achieve about 90% of the roofline performance, the block Jacobi preconditioner is re-designed to extract high computing power of GPUs, and the remaining bottleneck of halo data communication is avoided by overlapping communication and computation. The overall performance of the P-CG and P-CBCG solvers is determined by the competition between the CA properties of the global collective communication and the halo data communication, indicating an importance of the inter-node interconnect bandwidth per GPU. The developed GPU solvers are accelerated up to 2x compared with the former CPU solvers on KNLs, and excellent strong scaling is achieved up to 7,680 GPUs on the Summit.

Journal Articles

Microstructures of ZrC coated kernels for fuel of Pu-burner high temperature gas-cooled reactor in Japan

Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Mizuta, Naoki; Goto, Minoru; Tachibana, Yukio; Okamoto, Koji*

Journal of Nuclear Materials, 522, p.32 - 40, 2019/08

In order to realize Pu-burner high temperature gas-cooled reactor (HTGR), coated fuel particles (CFPs) with PuO$$_{2}$$-yittria stabilized zirconia (YSZ) fuel kernel coated with ZrC is employed for high nuclear proliferation resistance and very high burn-up. Japan Atomic Energy Agency (JAEA) have carried out ZrC coatings of particles which simulated PuO$$_{2}$$-YSZ kernels (CeO$$_{2}$$-YSZ particles or commercially available YSZ particles). Ce was used as simulating element of Pu. In this manuscript, microstructures of ZrC coated CeO$$_{2}$$-YSZ or YSZ particles were reported.

2008 (Records 1-20 displayed on this page)