Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1145

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Study on applicability of elasto-plastic constitutive model to mechanical behavior of buffer material in salt water conditions

Takayama, Yusuke; Kikuchi, Hirohito*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(1), p.12 - 21, 2020/06

In this study, an applicability of the modified Cam clay model to the buffer material under saltwater conditions was examined. First, consolidated-undrained triaxial test was conducted using NaCl solution and artificial seawater. Based on the consolidated-undrained triaxial compression test results and the existing consolidation test results, the difference in the mechanical behavior of the buffer material under distilled water and saltwater condition was clarified. In particular, there was a difference in the unloading behavior in the consolidation test. Through reproducibility analysis of these experimental data, it was confirmed that the mechanical behavior of the buffer material can be roughly reproduced by setting the swelling index according to the salt concentration.

Journal Articles

Preliminary analysis of sodium experimental apparatus PLANDTL-2 for development of evaluation method for thermal-hydraulics in reactor vessel of sodium fast reactor under decay heat removal system operation condition

Ono, Ayako; Tanaka, Masaaki; Miyake, Yasuhiro*; Hamase, Erina; Ezure, Toshiki

Mechanical Engineering Journal (Internet), 7(3), p.19-00546_1 - 19-00546_11, 2020/06

Fully natural circulation decay heat removal systems (DHRSs) are to be adopted for sodium fast reactors, which is a passive safety feature without any electrical pumps. It is required to grasp the thermal-hydraulic phenomena in the reactor vessel and evaluate the coolability of the core under the natural circulation not only for the normal operating condition but also for severe accident conditions. In this paper, the numerical results of the preliminary analysis for the sodium experimental condition with the PLANDTL-2 are discussed to establish an appropriate numerical models for the reactor core including the gap region among the subassemblies and the DHX. From these preliminary analyses, the characteristics of the thermal-hydraulics behavior in the PLANDTL-2 to be focused are extracted.

Journal Articles

Development of the residual sodium quantification method for a fuel pin bundle of SFRs before and after dry cleaning

Kudo, Hideyuki*; Otani, Yuichi*; Hara, Masahide*; Kato, Atsushi; Otaka, Masahiko; Ide, Akihiro*

Journal of Nuclear Science and Technology, 57(4), p.408 - 420, 2020/04

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

In a fuel handling system of sodium-cooled fast reactors (SFRs), it is necessary to remove the sodium remaining on spent fuel assemblies (FAs) before storing them in a spent fuel water pool (SFP) in order to minimize plant operating loads. A next-generation SFR in Japan has adopted an advanced dry cleaning process which consists of the following steps, argon gas blowing to remove the metallic residual sodium on the FA, moist argon gas blowing to deactivate the residual sodium, and direct storage in the SFP. This three-step process increases economic competitiveness and reduces waste products thanks to a waterless process. In this R&D work, performance of the dry cleaning process has been investigated.

JAEA Reports

Compilation of previous studies on secondary effects induced by earthquake and fault activity (Contract research)

Goto, Akira; Murakami, Masaki*; Sakai, Ryutaro*; Terusawa, Shuji*; Sueoka, Shigeru

JAEA-Review 2020-003, 60 Pages, 2020/03

JAEA-Review-2020-003.pdf:4.43MB

One of the natural phenomena that may affect the geological disposal system are earthquake and fault activity. Fault displacement due to the earthquake and fault activity will be considered the direct effects. In addition to it, it is necessary to consider the secondary effects include secondary faults formed by the seismic fault activity as well as spring water and mud volcanoes that are generated by fluid movement attributed to the fault activity. This paper introduces previous studies performed focused on the hydraulic effects (spring water and mud volcanoes) and mechanical effects (secondary faults) in order to understand the effects of these secondary phenomena on the geological disposal system. We were able to collect 142 literatures from Japan and overseas by searching for related keywords in Japanese and English. As a result, we compiled case studies of each secondary impact. From the viewpoint of geological disposal, we extracted the following issues for future research and development. As for the sump water induced by earthquakes and faulting, accumulation of information related to its mechanism, affected area, and activity history is required. As for the mud volcanoes, reviewing of the mechanism of anomalous pore water pressure that causing the formation, also development of estimation technique are required. And for the secondary faults, accumulation of the detailed spatial distribution and reviewing of formation mechanism are required.

Journal Articles

Post-test material analysis of eutectic melting reaction of boron carbide and stainless steel

Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro

Nippon Kikai Gakkai Rombunshu (Internet), 86(883), p.19-00360_1 - 19-00360_13, 2020/03

It is necessary to simulate a eutectic melting reaction and relocation behavior of boron carbide (B$$_{4}$$C) as a control rod material and stainless steel (SS) during a core disruptive accident in an advanced sodium-cooled fast reactor designed in Japan because the B$$_{4}$$C-SS eutectic relocation behavior has a large uncertainty in the reactivity history based on a simple calculation. A physical model simulating the eutectic melting reaction and relocation was developed and implemented into a severe accident simulation code. The developed model must be validated by using test data. To validate the physical model, therefore, the visualization tests of SS-B$$_{4}$$C eutectic melting reaction was carried out by contacting SS melts of several kg with a B$$_{4}$$C pellet heated up to about 1500 $$^{circ}$$C. The tests have shown the eutectic reaction visualization as well as freezing and relocation of the B$$_{4}$$C-SS eutectic in upper part of the solidified test piece due to the density separation. Post-test material analyses by using X-ray diffraction and transmission electron microscope techniques have indicated that FeB appeared at the B$$_{4}$$C-SS contact interface and (Fe,Cr)$$_{2}$$B at the top surface of the test piece. Glow discharge optical emission spectrometry has been applied to quantitative analysis of boron concentration distributions. The boron concentration was high at the upper surface and near the original position of the B$$_{4}$$C pellet.

Journal Articles

Interaction of Fe$$^{II}$$ and Si under anoxic and reducing conditions; Structural characteristics of ferrous silicate co-precipitates

Francisco, P. C. M.; Mitsui, Seiichiro; Ishidera, Takamitsu; Tachi, Yukio; Doi, Reisuke; Shiwaku, Hideaki

Geochimica et Cosmochimica Acta, 270, p.1 - 20, 2020/02

 Times Cited Count:0 Percentile:100(Geochemistry & Geophysics)

Journal Articles

Development of the residual sodium quantification method for a fuel assembly of SFRs

Kudo, Hideyuki*; Inuzuka, Taisuke*; Hara, Masahide*; Kato, Atsushi; Nagai, Keiichi; Ide, Akihiro*

Journal of Nuclear Science and Technology, 57(1), p.9 - 23, 2020/01

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

In sodium-cooled fast reactors (SFRs), it is necessary to remove the sodium remaining on spent fuel assemblies (FAs) before storing them in a spent fuel water pool (SFP) in order to minimize plant operating loads. A next-generation SFR in Japan has adopted an advanced dry cleaning process which consists of the following steps: argon gas blowing to remove the metallic residual sodium on the FA, moist argon gas blowing to deactivate the residual sodium, and direct storage in the SFP. This process increases economic competitiveness and reduces waste products. In this RD work, performance of the dry cleaning process has been investigated. This paper describes experimental and analytical work focusing on the amount of residual sodium remaining on FA components, for instance the handling head, the wrapper tube, the upper shielding, and the entrance nozzle which was conducted after investigation of residual sodium on fuel pin bundles as a part of series study of the cleaning process.

Journal Articles

Thermochronology on the fore-arc side of Northeast Japan Arc; A Preliminary report of apatite fission-track dating

Kajita, Yuya*; Fukuda, Shoma*; Sueoka, Shigeru; Hasebe, Noriko*; Tamura, Akihiro*; Morishita, Tomoaki*; Tagami, Takahiro*

Fisshion, Torakku Nyusureta, (32), p.6 - 7, 2019/12

no abstracts in English

Journal Articles

Thermophysical properties of molten stainless steel containing 5mass%B$$_{4}$$C

Fukuyama, Hiroyuki*; Higashi, Hideo*; Yamano, Hidemasa

Nuclear Technology, 205(9), p.1154 - 1163, 2019/09

 Times Cited Count:3 Percentile:12.61(Nuclear Science & Technology)

An electromagnetic-levitation technique performed in a static magnetic field was used to measure the density, surface tension, normal spectral emissivity, heat capacity, and thermal conductivity of molten 316L stainless steel (SS316L) and SS316L that contained 5mass%B$$_{4}$$C. The addition of 5mass%B$$_{4}$$C to SS316L yielded reductions of 111 K, 6%, 19%, and 6% in the liquidus temperature, density, normal spectral emissivity, and thermal conductivity at the liquidus temperature of SS316L, respectively. The heat capacity increased by 5% with this addition. Although the 5mass%B$$_{4}$$C addition had no clear effect on the surface tension, sulfur dissolved in the SS316L resulted in a significant decrease in the surface tension.

Journal Articles

Thermophysical properties of stainless steel containing 5 mass%B$$_{4}$$C in the solid phase

Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa

Nuclear Technology, 205(9), p.1164 - 1174, 2019/09

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 1; Project overview

Yamano, Hidemasa; Takai, Toshihide; Furukawa, Tomohiro; Kikuchi, Shin; Emura, Yuki; Kamiyama, Kenji; Fukuyama, Hiroyuki*; Higashi, Hideo*; Nishi, Tsuyoshi*; Ota, Hiromichi*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.418 - 427, 2019/09

Eutectic reactions between boron carbide (B$$_{4}$$C) and stainless steel (SS) as well as its relocation are one of the key issues in a core disruptive accident (CDA) evaluation in sodium-cooled fast reactors. Since such behaviors have never been simulated in CDA numerical analyses, it is necessary to develop a physical model and incorporate the model into the CDA analysis code. This study is focusing on B$$_{4}$$C-SS eutectic melting experiments, thermophysical property measurement of the eutectic melt, and physical model development for the eutectic melting reaction. The eutectic experiments involve the visualization experiments, eutectic reaction rate experiments and material analyses. The thermophysical properties are measured in the range from solid to liquid state. The physical model is developed for a severe accident computer code based on the measured data of the eutectic reaction rate and the physical properties. This paper describes the project overview and progress of experimental and analytical studies by 2017. Specific results in this paper is boron concentration distributions of solidified B$$_{4}$$C-SS eutectic sample in the eutectic melting experiments, which would be used for the validation of the eutectic physical model implemented into the computer code.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 4; Effect of B$$_{4}$$C addition on viscosity of austenitic stainless steel in liquid state

Ota, Hiromichi*; Kokubo, Hiroki*; Nishi, Tsuyoshi*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.858 - 860, 2019/09

A viscosity measurement apparatus has been developed. It is known that the measurement of the viscosity of molten alloy at elevated temperatures is difficult due to the difficulty of handling for low viscosity fluids such as the stainless steel (SS)+B$$_{4}$$C alloy. In this study, the viscosities of the molten nickel (Ni) and stainless steel (SS) were measured by the oscillating crucible method to confirm the performance of the viscosity measurement apparatus as a first step. This method is suitable for high temperature molten alloys. A crucible containing molten metal is suspended, and a rotational oscillation is given to the crucible electromagnetically. The oscillation was damped by the friction of molten metal. The viscosity is determined from the period of oscillation and the logarithmic decrement. The crucible was connected to a mirror block and an inertia disk made of aluminum, and whole of them was suspended by a wire made of platinum-13% rhodium alloy. A laser light is irradiated to the mirror. The reflection light is detected by the photo-detectors, and then, the logarithmic decrement of molten metal is determined. The viscosities of molten nickel and SS melts were measured up to 1823 K. In these results, the measured viscosity values of molten Ni and SS were close to those of the literature values of molten Ni and SS. By the equipment, the viscosity of molten SS+B$$_{4}$$C alloys are measured. The B$$_{4}$$C concentration dependence of the viscosity of molten SS+B$$_{4}$$C alloys is to be clarified.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 3; Effect of B$$_{4}$$C addition on thermophysical properties of austenitic stainless steel in a liquid state

Fukuyama, Hiroyuki*; Higashi, Hideo*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.853 - 857, 2019/09

Thermophysical properties of molten mixture of 316L stainless steel (SS316L) and control-rod material (B$$_{4}$$C) are necessary for the development of computer simulation codes that describe core degradation mechanisms during severe accidents in nuclear power plants involving sodium-cooled fast reactors. The effect of B$$_{4}$$C addition to SS316L on the solidus and liquidus temperatures were first measured by differential scanning calorimetry. An electromagnetic levitation technique performed in a static magnetic field was used to measure the density, surface tension, normal spectral emissivity, specific heat capacity, and thermal conductivity of molten SS316L and SS316L containing B$$_{4}$$C. The effects of B$$_{4}$$C addition to SS316L on the thermophysical properties were studied up to 10 mass%.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 5; Validation of a multi-phase model for eutectic reaction between molten stainless steel and B$$_{4}$$C

Liu, X.*; Morita, Koji*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.47 - 51, 2019/09

Investigation of the eutectic reaction in a core disruptive accident of sodium cooled reactor is of importance since reactor criticality will be affected by the change in reactivity after eutectic reaction. In this study, we performed 1st step of validation analysis using a fast reactor safety analysis code, SIMMER-III, with the developed model based on a new series of experiments, where a B$$_{4}$$C pellet was immersed into a molten stainless steel (SS) pool. The simulation results showed the general behavior of eutectic material formation measured in the experiments reasonably. The eutectic reaction consumes solid B$$_{4}$$C and liquid SS, and then the liquid eutectic composition is produced at the early stage of reaction due to the high temperature of molten SS. Movement of the eutectic material in the molten pool leads to the redistribution of boron element. Molten SS pool then freezes to solid SS and movement of eutectic material is stopped by surrounding solid SS. Boron concentration in the pool was measured after molten SS freezes into a solid. Simulation results indicate that boron tends to accumulate in the upper part of the molten pool. This is attributed to the buoyancy force acting on lighter boron in the molten SS pool. A parametric study was also conducted by changing the initial temperature of B$$_{4}$$C pellet and SS to investigate the temperature sensitivity on the eutectic reaction behavior.

Journal Articles

Overview of accident-tolerant fuel R&D program in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09

After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.

Journal Articles

Development of evaluation method for variability of groundwater flow conditions associated with long-term topographic change and climate perturbations

Onoe, Hironori; Kosaka, Hiroshi*; Matsuoka, Toshiyuki; Komatsu, Tetsuya; Takeuchi, Ryuji; Iwatsuki, Teruki; Yasue, Kenichi

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 26(1), p.3 - 14, 2019/06

In this study, it is focused on topographic changes due to uplift and denudation, also climate perturbations, a method which is able to assess the long-term variability of groundwater flow conditions using the coefficient variation based on some steady-state groundwater flow simulation results was developed. Spatial distribution of long residence time area which is not much influenced due to long-term topographic change and recharge rate change during the past one million years was able to estimate through the case study of the Tono area, Central Japan. By applying this evaluation method, it is possible to identify the local area that has low variability of groundwater flow conditions due to topographic changes and climate perturbations from the regional area quantitatively and spatially.

Journal Articles

Impact of safety design enhancements on construction cost of the advanced sodium loop fast reactor in Japan

Kato, Atsushi; Mukaida, Kyoko

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 10 Pages, 2019/05

Improvement of economic competitiveness is a part of key requirement in the project. By adopting innovative technologies to reduce plant commodities, JSFR could achieve economic competitiveness compared with LWR. After the Fukushima-Dai-ichi Nuclear Power Plants accident, safety enhancement measures were added on LWR in Japan mainly against external hazards. In parallel, Safety Design Criteria and Guidelines (SDC/SDG) for SFR were constructed in the framework of Generation IV international forum. Design studies of JSFR were carried out responding to GIF SDC/SDG and lessons learn from the Fukushima accident. This reports an impact of recent safety design enhancements on JSFR construction cost. Safety design enhancement adopted in JSFR.

Journal Articles

Comparison of sodium fast reactor core assembly seismic evaluation using the Japanese JAEA/MFBR/MHI and French CEA simulation tools

Yamamoto, Tomohiko; Matsubara, Shinichiro*; Harada, Hidenori*; Saunier, P.*; Martin, L.*; Gentet, D.*; Dirat, J.-F.*; Collignon, C.*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 8 Pages, 2019/05

Japan-France collaboration on ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) project is launched in 2014. In this project, Japan-France evaluates core assemblies with interferences on seismic event. The object of this study is to verify the seismic evaluation method on core assemblies between Japan and France by comparing the results. The analysis of this benchmark calculation shows a satisfactory agreement between the Japanese and French tools and the figures show a good behavior of the core in horizontal direction under French seismic condition.

Journal Articles

Dry cleaning process test for fuel assembly of fast reactor plant system, 1; Pilot scale test for fuel pin bundle

Kudo, Hideyuki*; Otani, Yuichi*; Hara, Masahide*; Kato, Atsushi; Ishikawa, Nobuyuki; Otaka, Masahiko; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Ide, Akihiro*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 10 Pages, 2019/05

A next generation SFR in Japan has adopted an advanced dry cleaning system which consists of the argon gas blowing process to reduce the amount of metallic residual sodium remaining on spent fuel assemblies. This paper describes experimental and analytical work focusing on the amount of residual sodium remaining on a fuel pin bundle before and after the argon gas blowing process. The experiments were conducted using a sodium test loop and a short specimen consisting of a 7 pin bundle. The effects of the blowing gas velocity and the blowing time were quantitatively analyzed in the experiments. On the basis of these experimental results, evaluation models predicting the amount of the residual sodium were constructed.

Journal Articles

Dry cleaning process test for fuel assembly of fast reactor plant system, 2; Laboratory scale test for fuel assembly and evaluation of the amount of residual sodium

Ide, Akihiro*; Kudo, Hideyuki*; Inuzuka, Taisuke*; Hara, Masahide*; Kato, Atsushi; Ishikawa, Nobuyuki; Otaka, Masahiko; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 10 Pages, 2019/05

A next generation SFR in Japan has adopted an advanced dry cleaning system which consists of the following process of argon gas blowing to reduce the amount of metallic sodium, moist argon gas blowing to deactivate the residual sodium, and direct storage in the SFP without using storage containers. This three-step process increases economic competitiveness and reduces waste products. In this Research and Development work, the amount of residual sodium and performance of the dry cleaning process were investigated. This paper describes experimental and analytical work for all parts of a fuel assembly except for a fuel pin bundle.

1145 (Records 1-20 displayed on this page)