Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tsuchiya, Harufumi; Toh, Yosuke; Ozu, Akira; Furutaka, Kazuyoshi; Kitatani, Fumito; Maeda, Makoto; Komeda, Masao
Journal of Nuclear Science and Technology, 60(11), p.1301 - 1312, 2023/11
Times Cited Count:2 Percentile:59.55(Nuclear Science & Technology)Furutaka, Kazuyoshi; Ozu, Akira; Toh, Yosuke
Nuclear Engineering and Technology, 55(11), p.4002 - 4018, 2023/11
Times Cited Count:1 Percentile:35.82(Nuclear Science & Technology)Furutaka, Kazuyoshi; Toh, Yosuke
Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.297 - 304, 2020/10
Ma, F.; Kopecky, S.*; Alaerts, G.*; Harada, Hideo; Heyse, J.*; Kitatani, Fumito; Noguere, G.*; Paradela, C.*; alamon, L.*; Schillebeeckx, P.*; et al.
Journal of Analytical Atomic Spectrometry, 35(3), p.478 - 488, 2020/03
Times Cited Count:5 Percentile:34.30(Chemistry, Analytical)Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Harada, Hideo
Nuclear Instruments and Methods in Physics Research A, 932, p.16 - 26, 2019/07
Times Cited Count:1 Percentile:11.76(Instruments & Instrumentation)Toh, Yosuke; Ozu, Akira; Tsuchiya, Harufumi; Furutaka, Kazuyoshi; Kitatani, Fumito; Komeda, Masao; Maeda, Makoto; Koizumi, Mitsuo
Proceedings of INMM 60th Annual Meeting (Internet), 7 Pages, 2019/07
Tsuchiya, Harufumi; Ma, F.; Kitatani, Fumito; Paradella, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*
Proceedings of 41st ESARDA Annual Meeting (Internet), p.374 - 377, 2019/05
Tsuchiya, Harufumi; Kitatani, Fumito; Toh, Yosuke; Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*
Proceedings of INMM 59th Annual Meeting (Internet), 6 Pages, 2018/07
Toh, Yosuke; Ozu, Akira; Tsuchiya, Harufumi; Furutaka, Kazuyoshi; Kitatani, Fumito; Komeda, Masao; Maeda, Makoto; Koizumi, Mitsuo; Heyse, J.*; Paradela, C.*; et al.
Proceedings of INMM 59th Annual Meeting (Internet), 9 Pages, 2018/07
Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi
EPJ Web of Conferences, 146, p.09002_1 - 09002_4, 2017/09
Times Cited Count:10 Percentile:97.57(Nuclear Science & Technology)Koizumi, Mitsuo; Rossi, F.; Rodriguez, D.; Takamine, Jun; Seya, Michio; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.
EPJ Web of Conferences, 146, p.09018_1 - 09018_4, 2017/09
Times Cited Count:3 Percentile:84.49(Nuclear Science & Technology)Maeda, Makoto; Komeda, Masao; Tobita, Hiroshi; Ozu, Akira; Kureta, Masatoshi; Bogucarska, T.*; Crochemore, J. M.*; Varasano, G.*; Pedersen, B.*
Dai-37-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu (CD-ROM), 7 Pages, 2017/02
JAEA and EC/JRC are carrying out collaborative research to develop NDA techniques that can be utilized for quantification of high radioactive special nuclear materials such as spent fuel and next generation minor actinide fuels. In the research, reliability of neutron transport codes is important because it is utilized for design and development of a demonstration system of next-generation Differential Die-away (DDA) technique in JAEA. In order to evaluate the reliability, actual neutron flux distribution in a sample cavity was examined in PUNITA device using JRC type DDA technique and JAWAS-T device using JAEA type DDA technique, and then the measurement results were compared with the simulation results obtained by the neutron transport codes. The neutron flux distribution in the target matrix was also examined in the PUNITA and compared with the simulation results. We report on the measurement and simulation results of the neutron flux distribution and evaluation results of the reliability of the neutron transport codes.
Koizumi, Mitsuo; Rossi, F.; Rodriguez, D.; Takamine, Jun; Seya, Michio; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.
EUR-28795-EN (Internet), p.868 - 872, 2017/00
Maeda, Makoto; Komeda, Masao; Ozu, Akira; Kureta, Masatoshi; Toh, Yosuke; Bogucarska, T.*; Crochemore, J. M.*; Varasano, G.*; Pedersen, B.*
EUR-28795-EN (Internet), p.694 - 701, 2017/00
Toh, Yosuke; Ozu, Akira; Tsuchiya, Harufumi; Furutaka, Kazuyoshi; Kitatani, Fumito; Komeda, Masao; Maeda, Makoto; Kureta, Masatoshi; Koizumi, Mitsuo; Seya, Michio; et al.
EUR-28795-EN (Internet), p.684 - 693, 2017/00
Koizumi, Mitsuo; Tsuchiya, Harufumi; Kitatani, Fumito; Harada, Hideo; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; Schillebeeckx, P.*
Nuclear Instruments and Methods in Physics Research A, 837, p.153 - 160, 2016/11
Times Cited Count:2 Percentile:18.37(Instruments & Instrumentation)Kureta, Masatoshi; Maeda, Makoto; Ozu, Akira; Tobita, Hiroshi
Proceedings of INMM 57th Annual Meeting (Internet), 8 Pages, 2016/07
Under the collaboration program with EC Joint Research Center, we have carried out the R&D program "Development of active neutron NDA techniques for nuclear nonproliferation and nuclear security" with DDA (Differential Die-away Analysis), NRTA, PGA / NRCA and DGS. In this paper, we presents the outline of the current activity and study on next generation DDA. The goal of this study is to establish the DDA technique for high radiation nuclear materials with small measurement uncertainty. Lastly simulation study on newly developed prototype system "Active-N" which will be constructed at JAEA/NUCEF/BECKY facility in 2017 is presented.
Tsuchiya, Harufumi; Kitatani, Fumito; Maeda, Makoto; Kureta, Masatoshi
Proceedings of INMM 57th Annual Meeting (Internet), 6 Pages, 2016/07
From a viewpoint of nuclear safeguards and nuclear security, it has recently become important to develop a non-destructive assay (NDA) system that accurately determines the amount of special nuclear materials (SNMs) in various samples such as spent fuels, next generation MA-Pu fuels and fuel debris. One candidate of those NDA techniques is neutron resonance transmission analysis (NRTA). It relies on a neutron time-of-flight measurement and is a well-established method to apply for the accurate evaluations of nuclear data, including total cross sections and resonance parameters. The potential of NRTA to quantify SNM in complex materials has been already demonstrated by performing NRTA measurement at IRMM/GELINA under collaboration of JAEA and JRC. However, a present NRTA system usually has a large electron accelerator facility to generate intense neutrons, whereas this is very difficult to apply to various facilities that need to measure SNM. Therefore a compact NRTA system would be required for practical applications of quantifying SNM in a variety of samples. In order to realize a compact NRTA system, we are developing a prototype with a D-T neutron generator that has a pulse width of 10 s and an average maximum neutron yield ranging from n/s to n/s. Numerical calculations were used to optimize the system performance to quantify SNM and MA in spent and MA-Pu fuels. In this presentation, those numerical calculation results, together with a brief description of the prototype, are presented. In addition, we discuss a future prospect of a compact NRTA system equipped with a neutron source with a shorter pulse width (ex. 100 ns) and a more intense neutron yield.
Maeda, Makoto; Komeda, Masao; Tobita, Hiroshi; Ozu, Akira; Kureta, Masatoshi; Bogucarska, T.*; Crochemore, J. M.*; Varasano, G.*; Pedersen, B.*
Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07
The JAEA and EC/JRC have started collaborative research to develop a technique that can be utilized for quantification of high radioactive special nuclear materials such as next generation minor actinide fuels. In the study of a Differential Die-Away (DDA) technique, which is one of the techniques to be improved in the collaborative research, JRC type and JAEA type DDA techniques are compared. In the JRC type DDA technique, large amount of thermal neutron is generated using D-T neutron generator and graphite moderator to accomplish high detection sensitivity for small amount of fissile material. On the other hand, in JAEA type, relatively hard neutron spectrum and moderation of neutron in the target matrix are utilized to minimize position dependence of detection efficiency. Estimation of the neutron field is important to evaluate the performance of the system in DDA technique. The purpose of this study is to validate simulation results by experimental results and evaluate neutron flux distribution in the system by the simulation and the experiment. In this paper, we present the evaluation results of the neutron flux distributions in PUNITA which utilizes JRC type DDA technique and JAWAS-T which utilizes JAEA type DDA technique obtained by Monte Carlo simulation and activation method.
Ozu, Akira; Tobita, Hiroshi; Kureta, Masatoshi; Tanigawa, Masafumi; Mukai, Yasunobu; Nakamichi, Hideo; Nakamura, Hironobu; Kurita, Tsutomu; Seya, Michio
Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/12
Against the background of the serious shortage of He gas, the Japan Atomic Energy Agency (JAEA) has newly developed an alternative ZnS ceramic scintillation neutron detector for the safeguards, with the support of the government (MEXT). A demonstrator of plutonium inventory sample assay system (ASAS) has been also developed as an alternative HLNCC (High Level Neutron Coincidence Counter). The results from numerical simulations using Monte-Carlo code MCNPX showed that the fundamental performances of ASAS equipped with the 24 alternative neutron detectors, such as neutron detection efficiency and die-away time, equal to or higher than those of conventional HLNCC could be obtained. Here we present the inner mechanical structure of ASAS, together with the results of the simulating design.