Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Journeau, C.*; Molina, D.*; Brackx, E.*; Berlemont, R.*; Tsubota, Yoichi
Journal of Nuclear Science and Technology, 61(9), p.1239 - 1247, 2024/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)CEA has manufactured a series of Fukushima Daiichi fuel debris simulants, either with depleted uranium oxide or with hafnium oxide as a surrogate of UO. In ex-vessel compositions resulting from an interaction between corium and concrete, the oxidic phase density becomes lighter than that of the metallic phase, which segregates at the bottom. Three of these metallic phases have been mechanically cut at CEA Cadarache with handsaw and with core boring tool in FUJISAN facility. It appeared that two of these metallic blocks were extremely hard to cut (one from a fabrication with uranium oxide, the other from a simulant block) while the last one was more easily cut. The similarities and differences in metallographic analyses (SEM-EDS and XRD) of these three metal blocks will be presented and discussed. This experience provides useful learnings in view of the cutting and retrieval of fuel debris from Fukushima Daiichi
Porcheron, E.*; Journeau, C.*; Delacroix, J.*; Berlemont, R.*; Bouland, A.*; Lallot, Y.*; Tsubota, Yoichi; Ikeda, Atsushi; Mitsugi, Takeshi
Proceedings of International Conference on Environmental Remediation and Radioactive Waste Management (ICEM2023) (Internet), 5 Pages, 2023/10
Results of the URASOL project aimed at evaluating the generation and dispersion of radioactive aerosols during the cutting of fuel debris, a key issue in the decommissioning of the damaged reactors at the Fukushima Daiichi Nuclear Power Station (1F), are presented in this report. Characterization of aerosols generated during heating and mechanical cutting of simulated fuel debris in terms of mass concentration, real-time number density, mass-based particle size distribution, morphology, and chemical properties is reported. In the heating tests, an increase in particle size with increasing temperature was observed, and in terms of particle number density, the case using depleted uranium simulated fuel debris had a smaller number density than the test using Hf-containing simulated fuel debris. In mechanical cleavage, the aerodynamic median mass diameter of the aerosol was almost the same for the radioactive and non-radioactive samples (about 3.74.4
m).
Tsubota, Yoichi; Porcheron, E.*; Journeau, C.*; Delacroix, J.*; Suteau, C.*; Lallot, Y.*; Bouland, A.*; Roulet, D.*; Mitsugi, Takeshi
Proceedings of International Conference on Environmental Remediation and Radioactive Waste Management (ICEM2023) (Internet), 6 Pages, 2023/10
In order to safely remove fuel debris from the Fukushima Daiichi Nuclear Power Station (1F), it is necessary to quantitatively evaluate radioactive airborne particulate generated by the cutting of nuclear fuel debris. We fabricated Uranium-bearing simulated fuel debris (SFD) with In/Ex-Vessel compositions and evaluated the physical and chemical properties of aerosols generated by heating the SFDs. Based on these results, we estimated the isotopic composition and radioactivity of aerosols produced when 1F-Unit2 fuel debris is laser cut, which is a typical example of a heating method. Plutonium, mainly Pu,
Am, and
Cm were found to be the alpha nuclide, and
Pu,
Cs-Ba, and
Sr-Y were found to be the beta nuclide of interest.
Journeau, C.*; Delacroix, J.*; Guvar, C.*; Testud, V.*; Brackx, E.*; Porcheron, E.*; Bouland, A.*; Berlemont, R.*; Ikeda, Atsushi
Science Talks (Internet), 6, p.100215_1 - 100215_9, 2023/05
Porcheron, E.*; Leblois, Y.*; Journeau, C.*; Delacroix, J.*; Molina, D.*; Suteau, C.*; Berlemont, R.*; Bouland, A.*; Lallot, Y.*; Roulet, D.*; et al.
Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 5 Pages, 2022/10
One of the important challenges for the decommissioning of the damaged reactors of the Fukushima Daiichi Nuclear Power Station (1F) is the fuel debris retrieval. The URASOL project, which is undertaken by a French consortium consisting of ONET Technologies, CEA, and IRSN for JAEA/CLADS, is dedicated to acquiring basic scientific data on the generation and characteristics of radioactive aerosols from the thermal or mechanical processing of fuel debris simulant. Heating process undertaken in the VITAE facility simulates some representative conditions of thermal cutting by LASER. For mechanical cutting, the core boring technique is implemented in the FUJISAN facility. Fuel debris simulants have been developed for inactive and active trials. The aerosols are characterized in terms of mass concentration, real time number concentration, mass size distribution, morphology, and chemical properties. The chemical characterization aims at identifying potential radioactive particles released and the associated size distribution, both of which are important information for assessing possible safety and radioprotection measures during the fuel debris retrieval operations at 1F.
Journeau, C.*; Molina, D.*; Brackx, E.*; Berlemont, R.*; Tsubota, Yoichi
Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 5 Pages, 2022/10
CEA has manufactured a series of Fukushima Daiichi fuel debris simulants, either with depleted uranium oxide or with hafnium oxide as a surrogate of UO. In ex-vessel compositions resulting from an interaction between corium and concrete, the oxidic phase density becomes lighter than that of the metallic phase, which segregates at the bottom. Three of these metallic phases have been mechanically cut at CEA Cadarache with handsaw and with core boring tool in FUJISAN facility. It appeared that two of these metallic blocks were extremely hard to cut (one from a fabrication with uranium oxide, the other from a simulant block) while the last one was more easily cut. The similarities and differences in metallographic analyses (SEM-EDS and XRD) of these three metal blocks will be presented and discussed. This experience provides useful learnings in view of the cutting and retrieval of fuel debris from Fukushima Daiichi.
Tsubota, Yoichi; Laffolley, H.; Porcheron, E.*; Journeau, C.*; Delacroix, J.*; Guvar, C.*; Brackx, E.*; Lallot, Y.*; Bouland, A.*
no journal, ,
In order to safely remove fuel debris from the Fukushima Daiichi Nuclear Power Station (1F), it is necessary to quantitatively evaluate radioactive airborne particulate generated by the cutting of nuclear fuel debris. We fabricated Uranium-bearing simulated fuel debris (SFD) with In/Ex-Vessel compositions and evaluated the physical and chemical properties of aerosols generated by heating the SFDs. Based on these results, we estimated the isotopic composition and radioactivity of aerosols produced when 1F-Unit2 fuel debris is laser cut, which is a typical example of a heating method. Plutonium, mainly Pu,
Am, and
Cm were found to be the alpha nuclide, and
Pu,
Cs-Ba, and
Sr-Y were found to be the beta nuclide of interest.
Guvar, C.*; Faure, J.*; Testud, V.*; Roger, J.*; Domenger, R.*; Valette, R.*; Brackx, E.*; Bouyer, V.*; Journeau, C.*; Berlemont, R.*; et al.
no journal, ,
The URASOL and the DA projects, respectively led by JAEA and CRIEPI in collaboration with ONET/CEA/IRSN, were proposed to obtain basic data on aerosols generation and characteristics from prototypic FD-simulants containing depleted uranium oxide cut by thermal or mechanical processing tools. The whole process developed by ONET/CEA/IRSN allows the manufacturing of specific compositions and supplying corium samples for cutting, the realization of cutting tests and the on-line dedicated aerosols measurements as well as sampling aerosols, to conduct initial FD simulants and aerosols post-trial analyses. This paper focuses on the initial FD simulant and aerosols chemical and microstructural analyses. Results on an ex-vessel composition of FD, named VF-U3, are given.