Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; 古府 麻衣子*; 楡井 真実; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
被引用回数:16 パーセンタイル:91.30(Multidisciplinary Sciences)Crystalline solids exhibiting inherently low lattice thermal conductivity (
) are of great importance in applications such as thermoelectrics and thermal barrier coatings. However,
cannot be arbitrarily low and is limited by the minimum thermal conductivity related to phonon dispersions. In this work, we report the liquid-like thermal transport in a well-ordered crystalline CsAg
Te
, which exhibits an extremely low
value of
0.18 Wm
K
. On the basis of first-principles calculations and inelastic neutron scattering measurements, we find that there are lots of low-lying optical phonon modes at
3.1 meV hosting the avoided-crossing behavior with acoustic phonons. These strongly localized modes are accompanied by weakly bound rattling Ag atoms with thermally induced large amplitudes of vibrations. Using the two-channel model, we demonstrate that coupling of the particle-like phonon modes and the heat-carrying wave-like phonons is essential for understanding the low
, which is heavily deviated from the
temperature dependence of the standard Peierls theory. In addition, our analysis indicates that the soft structural framework with liquid-like motions of the fluctuating Ag atoms is the underlying cause that leads to the suppression of the heat conduction in CsAg
Te
. These factors synergistically account for the ultralow
value. Our results demonstrate that the liquid-like heat transfer could indeed exist in a well-ordered crystal.
-MgAgSbLi, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; 古府 麻衣子; 中島 健次; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.
Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03
被引用回数:13 パーセンタイル:92.16(Physics, Applied)The desire for intrinsically low lattice thermal conductivity (
) in thermoelectrics motivates numerous efforts on understanding the microscopic mechanisms of heat transport in solids. Here, based on theoretical calculations, we demonstrate that
-MgAgSb hosts low-energy localized phonon bands and avoided crossing of the rattler modes, which coincides with the inelastic neutron scattering result. Using the two-channel lattice dynamical approach, we find, besides the conventional contribution (
70% at 300 K) from particlelike phonons propagating, the coherence contribution dominated by the wavelike tunneling of phonons accounts for
30% of total
at 300 K. By considering dual contributions, our calculated room-temperature
of 0.64 Wm
K
well agrees with the experimental value of 0.63 Wm
K
. More importantly, our computations give a nonstandard
dependence, perfectly explaining the abnormal temperature-trend of
in experiment for
-MgAgSb. By molecular dynamics simulation, we reveal that the structure simultaneously has soft crystalline sublattices with the metavalent bonding and fluctuating liquid-like sublattices with thermally induced large amplitude vibrations. These diverse forms of chemical bonding arouse mixed part-crystal part-liquid state, scatter strongly heat-carrying phonons, and finally produce extremely low
. The fundamental research from this study will accelerate the design of ultralow-
materials for energy-conversion applications.