Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Rapp, L.*; Matsuoka, Takeshi*; Firestein, K. L.*; Sagae, Daisuke*; Habara, Hideaki*; Mukai, Keiichiro*; Tanaka, Kazuo*; Gamaly, E. G.*; Kodama, Ryosuke*; Seto, Yusuke*; et al.
Physical Review Research (Internet), 6(2), p.023101_1 - 023101_18, 2024/04
It is generally known that irradiating a solid surface with a laser pulse of ultra-relativistic intensity generates a plasma on the surface, which in turn creates an ultrahigh pressure inside. In this study, the crystal structure analysis of high-pressure phases generated inside silicon single-crystals irradiated by this laser was performed using the diffraction system at the Stress and Imaging apparatus of BL22XU, which is a JAEA-BL. The results obtained confirm the existence of high-pressure phases that silicon is said to possess: body-centered, rhombohedral, hexagonal, and tetragonal phases in the interior. We can get the results that the crystal structure of silicon polymorphs of being include body-centered, rhombohedral, hexagonal-diamond, tetragonal exists. In the future, we will accumulate data and apply them to control the internal structure, strength, and functionality of materials.
Li, B.; Wang, H.*; Kawakita, Yukinobu; Zhang, Q.*; Feygenson, M.*; Yu, H. L.*; Wu, D.*; Ohara, Koji*; Kikuchi, Tatsuya*; Shibata, Kaoru; et al.
Nature Materials, 17(3), p.226 - 230, 2018/03
Times Cited Count:155 Percentile:97.17(Chemistry, Physical)