Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of electron correlations on spin excitation bandwidth in Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$ as seen via time-of-flight inelastic neutron scattering

Murai, Naoki; Suzuki, Katsuhiro*; Ideta, Shinichiro*; Nakajima, Masamichi*; Tanaka, Kiyohisa*; Ikeda, Hiroaki*; Kajimoto, Ryoichi

Physical Review B, 97(24), p.241112_1 - 241112_6, 2018/06

 Times Cited Count:5 Percentile:26.15(Materials Science, Multidisciplinary)

We use inelastic neutron scattering (INS) to investigate the effect of electron correlations on spin dynamics in iron-based superconductor Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$. Our INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A first principles analysis of dynamical spin susceptibility, incorporating the mass renormalization factor of 3, as determined by angle-resolved photoemission spectroscopy, provides a reasonable description of the observed spin excitations. This analysis shows that electron correlations in the Fe-3d bands yield enhanced effective electron masses, and consequently, induce substantial narrowing of the spin excitation bandwidth. Our results highlight the importance of electron correlations in an itinerant description of the spin excitations in iron-based superconductors.

Oral presentation

Large downward renormalization of spin excitation energies in Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$ due to electron correlation effects

Murai, Naoki; Kajimoto, Ryoichi; Suzuki, Katsuhiro*; Ideta, Shinichiro*; Nakajima, Masamichi*; Ikeda, Hiroaki*; Tanaka, Kiyohisa*

no journal, , 

Using inelastic neutron scattering (INS) and angle-resolved photoemission spectroscopy (ARPES), we investigate the spin dynamics of iron-based superconductor Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$. The INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A random phase approximation (RPA) treatment of the dynamical spin susceptibility, incorporating the band renormalization factor of 3 derived from the ARPES measurements on the same crystals, provides a reasonable description of the observed spin excitations. This analysis shows that the experimental spin excitation peak lies at a much lower energy than the bare value, reflecting a strong renormalization of the quasiparticle band dispersion near the Fermi level due to electron correlation effect. The present results point to a unified framework that connects the magnetic response to the underlying electronic structure of the materials.

Oral presentation

Effect of electron correlations on spin excitation bandwidth in Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$ as seen via time-of-flight inelastic neutron scattering

Murai, Naoki; Kajimoto, Ryoichi; Suzuki, Katsuhiro*; Ikeda, Hiroaki*; Nakajima, Masamichi*; Ideta, Shinichiro*; Tanaka, Kiyohisa*

no journal, , 

We use inelastic neutron scattering (INS) to investigate the effect of electron correlations on spin dynamics in iron-based superconductor Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$. Our INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A first principles analysis of dynamical spin susceptibility, incorporating the mass renormalization factor of 3, as determined by angle-resolved photoemission spectroscopy, provides a reasonable description of the observed spin excitations. This analysis shows that electron correlations in the Fe-3d bands yield enhanced effective electron masses, and consequently, induce substantial narrowing of the spin excitation bandwidth. Our results highlight the importance of electron correlations in an itinerant description of the spin excitations in iron-based superconductors.

3 (Records 1-3 displayed on this page)
  • 1