Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 427

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Journal Articles

Contrast dependence of scattering profiles for poly(ethylene glycol) in water; Investigation by small-angle neutron scattering with $$^{3}$$He spin filter and small-angle X-ray scattering

Ryoki, Akiyuki*; Watanabe, Fumi*; Okudaira, Takuya*; Takahashi, Shingo*; Oku, Takayuki; Hiroi, Kosuke; Motokawa, Ryuhei; Nakamura, Yo*

Journal of Chemical Physics, 160(11), p.114907_1 - 114907_9, 2024/03

Journal Articles

Band gap formation in graphene by hybridization with Hex-Au(001) reconstructed surface

Terasawa, Tomoo; Matsunaga, Kazuya*; Hayashi, Naoki*; Ito, Takahiro*; Tanaka, Shinichiro*; Yasuda, Satoshi; Asaoka, Hidehito

Vacuum and Surface Science, 66(9), p.525 - 530, 2023/09

As Au (001) surfaces exhibit a quasi-one-dimensional corrugated structure, Hex-Au(001), its periodicity was predicted to change the electronic structure of graphene when graphene was grown on this surface. Furthermore, the hybridization between graphene and Au is known to introduce bandgap and spin polarization into graphene. Here, we report angle-resolved photoemission spectroscopy and density functional theory calculation of graphene on a Hex-Au(001) surface. A bandgap of 0.2 eV in the graphene Dirac cone was observed at the crossing point of the graphene Dirac cone and Au 6sp bands, indicating that the origin of the bandgap formation was the hybridization between the graphene Dirac cone and Au 6sp band. We discussed the hybridization mechanism and anticipated spin injection into the graphene Dirac cone.

Journal Articles

Step unbunching phenomenon on 4H-SiC (0001) surface during hydrogen etching

Sakakibara, Ryotaro*; Bao, J.*; Yuhara, Keisuke*; Matsuda, Keita*; Terasawa, Tomoo; Kusunoki, Michiko*; Norimatsu, Wataru*

Applied Physics Letters, 123(3), p.031603_1 - 031603_4, 2023/07

 Times Cited Count:1 Percentile:54.89(Physics, Applied)

We here report a step unbunching phenomenon, which is the inverse of the phenomenon of step bunching. When a 4H-SiC (0001) surface is annealed at a high temperature, step bunching arises due to the different velocities of the step motion in adjacent steps, resulting in steps with a height of more than several nanometers. We found that the bunched steps, thus, obtained by hydrogen etching in an Ar/H$$_{2}$$ atmosphere were "unbunched" into lower height steps when annealed subsequently at lower temperatures. This unbunching phenomenon can be well explained by the consequence of the competition between energetics and kinetics. Our findings provide another approach for the surface smoothing of SiC by hydrogen etching and may give significant insight into the application of SiC power devices and two-dimensional materials growth techniques in general.

Journal Articles

A New application technique of a position-sensitive liquid light guide Cerenkov counter for the simultaneous position detection of $$^{90}$$Sr/$$^{90}$$Y and $$^{137}$$Cs radioactivity

Terasaka, Yuta; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 1049, p.168071_1 - 168071_7, 2023/04

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Neutron/$$gamma$$-ray discrimination based on the property and thickness controls of scintillators using Li glass and LiCAF(Ce) in a $$gamma$$-ray field

Kaburagi, Masaaki; Shimazoe, Kenji*; Terasaka, Yuta; Tomita, Hideki*; Yoshihashi, Sachiko*; Yamazaki, Atsushi*; Uritani, Akira*; Takahashi, Hiroyuki*

Nuclear Instruments and Methods in Physics Research A, 1046, p.167636_1 - 167636_8, 2023/01

 Times Cited Count:3 Percentile:90.12(Instruments & Instrumentation)

We focus on the thickness and property controls of inorganic scintillators used for thermal neutron detection in intense $$gamma$$-ray fields without considering pulse shape discrimination techniques. GS20$$^{rm{TM}}$$ (a lithium glass) and LiCaAlF$$_6$$:Ce(LiCAF:Ce) cintillators with thicknesses of 0.5 and 1.0 mm, respectively, have been employed. Pulse signals generated by photomultiplier tubes, to which the scintillators were coupled, were inserted into a digital pulse processing unit with 1 Gsps, and the areas of waveforms were integrated for 360 ns. In a $$^{60}$$Co $$gamma$$-ray field, the neutron detection for GS20$$^{rm{TM}}$$ with a 0.5-mm thickness was possible at dose rates of up to 0.919 Gy/h; however, for LiCAF:Ce, neutron detection was possible at 0.473 Gy/h, and it failed at 0.709 Gy/h. Threfore, in a $$^{60}$$Co $$gamma$$-ray field, the neutron/$$gamma$$-ray discrimination of GS20$$^{rm{TM}}$$ was better than that of LiCAF:Ce due to its better energy resolution and higher detection efficiency.

Journal Articles

Band gap opening in graphene by hybridization with Au (001) reconstructed surfaces

Terasawa, Tomoo; Matsunaga, Kazuya*; Hayashi, Naoki*; Ito, Takahiro*; Tanaka, Shinichiro*; Yasuda, Satoshi; Asaoka, Hidehito

Physical Review Materials (Internet), 7(1), p.014002_1 - 014002_10, 2023/01

 Times Cited Count:3 Percentile:72.03(Materials Science, Multidisciplinary)

Au(001) surfaces exhibit a complex reconstructed structure [Hex-Au(001)] comprising a hexagonal surface and square bulk lattices, yielding a quasi-one-dimensional corrugated surface. When graphene was grown on this surface, the periodicity of the corrugated surface was predicted to change the electronic structure of graphene, forming bandgaps and new Dirac points. Furthermore, the graphene-Au interface is promising for bandgap generation and spin injection due to band hybridization. Here, we report the angle-resolved photoemission spectroscopy and density functional calculation of graphene on a Hex-Au(001) surface. The crossing point of the original and replica graphene $$pi$$ bands showed no bandgap, suggesting that the one-dimensional potential was too small to modify the electronic structure. A bandgap of 0.2 eV was observed at the crossing point of the graphene $$pi$$ and Au $$6sp$$ bands, indicating that the bandgap is generated using hybridization of the graphene $$pi$$ and Au $$6sp$$ bands. We discussed the hybridization mechanism and concluded that the R30 configuration between graphene and Au and an isolated electronic structure of Au are essential for effective hybridization between graphene and Au. We anticipate that hybridization between graphene $$pi$$ and Au $$6sp$$ would result in spin injection into graphene.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2022-033, 80 Pages, 2022/12

JAEA-Review-2022-033.pdf:4.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop an optical fiber type radiation sensor that can measure the radiation distribution one-dimensionally along the fiber under a high radiation field for the decommissioning of 1F. Based on the conventional time-of-flight method, we found several promising sensor candidates for the radiation distribution measurement under high dose rate and many scattered gamma-rays.

Journal Articles

Basic study on a novel single-end readout type radiation distribution sensing method using an optical fiber

Terasaka, Yuta; Watanabe, Kenichi*; Uritani, Akira*

Hoshasen (Internet), 47(3), p.89 - 96, 2022/10

Journal Articles

Weinberg operator contribution to the $$CP$$-odd nuclear force in the quark model

Yamanaka, Nodoka*; Oka, Makoto

Physical Review D, 106(7), p.075021_1 - 075021_15, 2022/10

 Times Cited Count:1 Percentile:20.71(Astronomy & Astrophysics)

The contribution of the $$CP$$ violating three-gluon interaction, proposed by Weinberg, to the short-range $$CP$$-odd nuclear force is evaluated in the nonrelativistic quark model. We first show that the naive leading contribution generated by the quark exchange process vanishes at sufficiently short distance within the resonating group method, by considering the one-loop level gluon exchange $$CP$$-odd interquark potential induced by the Weinberg operator with massive quarks and gluons. We then estimate the true leading contribution by evaluating the gluonic correction to the $$CP$$-odd interquark potential in the closure approximation. It is found that the resulting irreducible $$CP$$-odd nuclear force is comparable to that generated by the chiral rotation of the $$CP$$-even short-range nuclear force, where the $$CP$$-odd mass calculated with QCD sum rules is used as input. The explicit calculation of the electric dipole moment (EDM) of the $$^3$$He nucleus yields $$d^{(irr)}_{3He}(w) = -1.5 w e$$ MeV. The total $$^3He$$ EDM, accounting for the intrinsic nucleon EDM, the pion-exchange and the short- range $$CP$$-odd nuclear force, is $$d_{(tot)}(w) = 20(+14-11) we$$ MeV, with the dominant effect coming from the intrinsic nucleon EDM.

Journal Articles

Estimation of flow field in natural convection with density stratification by local ensemble transform Kalman filter

Ishigaki, Masahiro*; Hirose, Yoshiyasu; Abe, Satoshi; Nagai, Toru*; Watanabe, Tadashi*

Fluids (Internet), 7(7), p.237_1 - 237_18, 2022/07

Journal Articles

First demonstration of a novel single-end readout type position-sensitive optical fiber radiation sensor based on wavelength-resolved photon counting

Terasaka, Yuta; Watanabe, Kenichi*; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 1034, p.166793_1 - 166793_6, 2022/07

 Times Cited Count:2 Percentile:53.91(Instruments & Instrumentation)

Journal Articles

Correction method of measurement volume effects on time-averaged statistics for laser Doppler velocimetry

Wada, Yuki; Furuichi, Noriyuki*; Tsuji, Yoshiyuki*

European Journal of Mechanics B, Fluids, 91, p.233 - 243, 2022/01

 Times Cited Count:1 Percentile:21.05(Mechanics)

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2021-033, 55 Pages, 2021/12

JAEA-Review-2021-033.pdf:2.9MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2020. We are developing a one-dimensional optical fiber radiation sensor that can estimate the radioactive source distribution "along lines" instead of "at points". To improve the conventional time-of-flight optical fiber radiation sensor for the application under high dose rate environment, basic evaluation tests were conducted using various optical fibers with different diameters and materials.

Journal Articles

Feasibility study of the one-dimensional radiation distribution sensing method using an optical fiber sensor based on wavelength spectrum unfolding

Terasaka, Yuta; Watanabe, Kenichi*; Uritani, Akira*; Yamazaki, Atsushi*; Sato, Yuki; Torii, Tatsuo; Wakaida, Ikuo

Journal of Nuclear Engineering and Radiation Science, 7(4), p.042002_1 - 042002_7, 2021/10

For the application in the measurement of the high dose rate hot spots inside the Fukushima Daiichi Nuclear Power Station (FDNPS) buildings, we propose a novel one-dimensional radiation distribution sensing method using an optical fiber sensor based on wavelength spectrum unfolding. The proposed method estimates the incident position of radiation to the fiber by the unfolding of the wavelength spectrum output from the fiber edge using the fact that the attenuation length of light along the fiber depends on the wavelength. Because this method measures the integrated light intensity, this method can avoid the problem of counting loss and signal pile-up, which occurs in the radiation detector with pulse counting mode under high dose rate field. Through basic experiments using the ultraviolet light source and $$^{90}$$Sr/$$^{90}$$Y radioactive point source, basic properties of source position detection were confirmed.

Journal Articles

Evaluation of a one-dimensional position-sensitive quartz optical fiber sensor based on the time-of-flight method for high radiation dose rate applications

Terasaka, Yuta; Watanabe, Kenichi*; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 996, p.165151_1 - 165151_8, 2021/04

 Times Cited Count:3 Percentile:46.8(Instruments & Instrumentation)

For the measurement of radiation distribution inside the Fukushima Daiichi Nuclear Power Station (FDNPS) buildings, the evaluation of a small-diameter quartz optical fiber as a one-dimensional position-sensitive sensor was conducted. The sensor determines the incident position of radiation into the fiber using the time-of-flight information of emitted Cerenkov photons in the optical fiber. Compared with the conventional sensor using the plastic scintillating fiber, the quartz optical fiber has much higher position resolution, which may be the result of the improvement of timing characteristics caused by the prompt emission mechanism of the Cerenkov radiation. Additionally, the response of position-sensitive quartz optical fiber sensor under high radiation field was evaluated, and good count rate linearity was confirmed using the 10 m long quartz optical fiber with a diameter of 0.4 mm up to the dose rate at least 20 mSv/h, and the radiation tolerance property up to the accumulated dose of 1 kGy was evaluated.

Journal Articles

A Project focusing on the contamination mechanism of concrete after the accident at Fukushima Daiichi Nuclear Power Plant

Yamada, Kazuo*; Maruyama, Ippei*; Haga, Kazuko*; Igarashi, Go*; Aihara, Haruka; Tomita, Sayuri*; Kiran, R.*; Osawa, Norihisa*; Shibata, Atsuhiro; Shibuya, Kazutoshi*; et al.

Proceedings of International Waste Management Symposia 2021 (WM2021) (CD-ROM), 10 Pages, 2021/03

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2020-063, 44 Pages, 2021/01

JAEA-Review-2020-063.pdf:2.55MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2019.

Journal Articles

New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks

Sasaki, Miyuki; Sanada, Yukihisa; Katengeza, E. W.*; Yamamoto, Akio*

Scientific Reports (Internet), 11, p.1857_1 - 1857_11, 2021/01

 Times Cited Count:13 Percentile:67.27(Multidisciplinary Sciences)

This study proposed a new method to visualize the ambient dose rate distribution using artificial neural networks from the results of airborne radiation monitoring. The method used airborne radiation monitoring conducted around Fukushima Daiichi Nuclear Power Plant by an unmanned aerial vehicle. A lot of survey data which had obtained in the past was used as training data for building a network. The reliability of the artificial neural network method was evaluated by comparison with the ground-based survey data. The dose rate map that was created by the artificial neural networks method reproduced the ground-based survey results better than traditional methods.

Journal Articles

Characteristics in trace elements compositions of tephras (B-Tm and To-a) for identification tools

Nara, Fumiko*; Yokoyama, Tatsunori; Yamasaki, Shinichi*; Minami, Masayo*; Asahara, Yoshihiro*; Watanabe, Takahiro; Yamada, Kazuyoshi*; Tsuchiya, Noriyoshi*; Yasuda, Yoshinori*

Geochemical Journal, 55(3), p.117 - 133, 2021/00

 Times Cited Count:6 Percentile:57.32(Geochemistry & Geophysics)

The absolute date of the Millennium Eruption (ME) of Changbaishan Volcano is widely recognized as AD 946. The Baegdosan-Tomakomai (B-Tm) tephra dispersed during the ME is a robust-age key bed. In order to identify the tephra, refractive index and major-element compositions of volcanic glass shards are conventionally used. However, trace-element analysis has been rarely carried out, especially for rare-earth elements (REEs) and for tephra layer bulk sediments. Here we present the datasets of major- and trace-element compositions datasets for the glass shards and bulk sediments of the B-Tm and Towada caldera eruptions (To-a) tephra deposits from the Lake Ogawara sediment core, Tohoku region, northern Japan. The depth profiles of the major and trace elements show the significant peaks for the K$$_{2}$$O and some trace elements (Zn, Rb, Zr, Nb, Sn, Y, La, Ce, Nd, Th, and U) at the B-Tm tephra layer in the Lake Ogawara sediment core, but no peaks of these elements at the To-a tephra layer. High concentrations of the trace elements in the B-Tm tephra layer were observed in individual glass shards as well as in the bulk sediment. These concentrations are highlighted by the elemental abundance pattern normalized by the crustal abundance. The elemental pattern in individual glass shards from other Japanese tephras showed significant differences from those of the B-Tm tephra, especially in REEs compositions. The trace-element compositions of the glass shards and bulk sediment show strong advantages for distinguishing the B-Tm tephra from other Japanese tephras.

427 (Records 1-20 displayed on this page)