検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Spatial resolution improvement of EIT system using internal invasive electrodes for measurement of two-phase flow

廣瀬 意育; 久木田 豊; 柴本 泰照; 佐川 淳*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 12 Pages, 2022/03

Electric impedance tomography (EIT) is a non-invasive and radiation-free imaging method applicable to gas/liquid two-phase flow measurements. It determines the electrical resistivity distribution of an object from measurements of boundary potentials in response to current injection. Due to the severely ill posed nature of the problem, the quality of reconstructed image depends much on the quality and amount of information available from potential measurements. We have proposed a DC pulse-driven EIT system design equipped with countermeasures for the influences of electrode polarization on potential measurements (Hirose et al., in preparation). The usefulness of EIT in two-phase flow measurement is however restricted by the intrinsically limited spatial resolution. Due to the diffusive nature of electricity, the spatial resolution degrades quickly with the distance from the boundary. In this study, we attempt to improve the spatial resolution by adding thin electrodes inserted into the flow field away from the boundary. Although this means that non-invasiveness is traded off, the influence of invasive electrodes on flow field could be estimated and limited on the basis of experiences gained with other intrusive methods, e.g., needle probes for measurement of interfacial area. The benefit taken by the addition of invasive electrodes, on the other hand, would depend on two-phase flow regime and other flow parameters. In the present paper we consider dispersed bubbly flow and simulate the bubbles with thin cylindrical insulators. The results obtained with and without invasive electrodes are compared to discuss the effectiveness and limitations in measurement of two-phase flow.

論文

Coping with electrode polarization for development of DC-driven electrical impedance tomography

廣瀬 意育; 佐川 淳*; 柴本 泰照; 久木田 豊

Flow Measurement and Instrumentation, 81, p.102006_1 - 102006_9, 2021/10

 被引用回数:2 パーセンタイル:10.51(Engineering, Mechanical)

An electrical impedance tomography (EIT) system design is proposed for imaging of phase distribution in gas-water two-phase flow from boundary measurement of electrical potentials in response to direct current (DC) injection. DC injection simplifies substantially the system design, but introduces problems due to polarization of injection electrodes. Electrode polarization means charge accumulation on the electrode-water interface causing a drift in the interfacial potential difference. The polarization problems are coped with by using dedicated electrodes for injection and potential measurement, and using a current source unaffected by the polarization of current-carrying electrodes (CCEs). Furthermore, the polarization of CCEs is controlled, to lessen the possible influence on the sensing electrodes (SEs), by using a short (milliseconds in width) pulse for injection with a charge balanced injection strategy. The impact of electrode polarization and the effectiveness of countermeasures introduced in the present design are discussed through comparisons of measured boundary potentials and of images reconstructed for a simple object simulating large bubbles in water.

2 件中 1件目~2件目を表示
  • 1