Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 236

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Influence of plutonium content in dissolver solutions derived from irradiated fast reactor fuels on plutonium stripping in multistage countercurrent liquid-liquid extraction with acid split flowsheet

Nakahara, Masaumi; Shibata, Atsuhiro

Journal of Nuclear Science and Technology, 60(7), p.849 - 858, 2023/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To develop the acid split method which has highly nuclear proliferation resistance, influence of Pu content in dissolver solutions derived from irradiated fast reactor fuel on the Pu stripping was investigated in experiments and a calculation. The Pu content in the U/Pu and U products increased with increasing the Pu content in the dissolver solution. Moreover, the calculated results indicate that the Pu leakage into the U product is suppressed with the Pu stripping solution only at low temperature.

Journal Articles

Harmless treatment of radioactive liquid wastes for safe storage in systematic treatment of radioactive liquid waste for decommissioning project

Nakahara, Masaumi; Watanabe, So; Aihara, Haruka; Takahatake, Yoko; Arai, Yoichi; Ogi, Hiromichi*; Nakamura, Masahiro; Shibata, Atsuhiro; Nomura, Kazunori

Proceedings of International Conference on Nuclear Fuel Cycle; Sustainable Energy Beyond the Pandemic (GLOBAL 2022) (Internet), 4 Pages, 2022/07

Various radioactive wastes have been generated from Chemical Processing Facility for basic research on advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology. Many types of reagents have been used for the experiments, and some troublesome materials were produced in the course of experiments. The radioactive liquid wastes were treated for stable and safe storage using decomposition, solvent extraction, precipitation, and solidification methods. In this study, current status of harmless treatment for the radioactive liquid wastes would be reported.

Journal Articles

Hybrid process combining solvent extraction / low pressure loss extraction chromatography for a reasonable MA(III) recovery process

Sano, Yuichi; Sakamoto, Atsushi; Miyazaki, Yasunori; Watanabe, So; Morita, Keisuke; Emori, Tatsuya; Ban, Yasutoshi; Arai, Tsuyoshi*; Nakatani, Kiyoharu*; Matsuura, Haruaki*; et al.

Proceedings of International Conference on Nuclear Fuel Cycle; Sustainable Energy Beyond the Pandemic (GLOBAL 2022) (Internet), 4 Pages, 2022/07

We developed a hybrid MA(III) recovery process combining MA(III)+Ln(III) co-recovery flowsheet by solvent extraction with TBP and MA(III)/Ln(III) separation flowsheet by simulated moving bed chromatography using HONTA impregnated adsorbents with large particle size porous silica support.

JAEA Reports

Stabilization treatment of nuclear fuel material contained with organic matter

Senzaki, Tatsuya; Arai, Yoichi; Yano, Kimihiko; Sato, Daisuke; Tada, Kohei; Ogi, Hiromichi*; Kawanobe, Takayuki*; Ono, Shimpei; Nakamura, Masahiro; Kitawaki, Shinichi; et al.

JAEA-Testing 2022-001, 28 Pages, 2022/05

JAEA-Testing-2022-001.pdf:2.33MB

In preparation for the decommissioning of Laboratory B of the Nuclear Fuel Cycle Engineering Laboratory, the nuclear fuel material that had been stored in the glove box for a long time was moved to the Chemical Processing Facility (CPF). This nuclear fuel material was stored with sealed by a polyvinyl chloride (PVC) bag in the storage. Since it was confirmed that the PVC bag swelled during storage, it seems that any gas was generated by radiolysis of the some components contained in the nuclear fuel material. In order to avoid breakage of the PVC bag and keep it safety for long time, we began the study on the stabilization treatment of the nuclear fuel material. First, in order to clarify the properties of nuclear fuel material, radioactivity analysis, component analysis, and thermal analysis were carried out. From the results of thermal analysis, the existence of organic matter was clarified. Then, ion exchange resin with similar thermal characteristics was selected and the thermal decomposition conditions were investigated. From the results of these analyzes and examinations, the conditions for thermal decomposition of the nuclear fuel material contained with organic matter was established. Performing a heat treatment of a small amount of nuclear fuel material in order to confirm the safety, after which the treatment amount was scaled up. It was confirmed by the weight change after the heat treatment that the nuclear fuel material contained with organic matter was completely decomposed.

Journal Articles

Ten years after the NPP accident at Fukushima; Review on fuel debris behavior in contact with water

Grambow, B.; Nitta, Ayako; Shibata, Atsuhiro; Koma, Yoshikazu; Utsunomiya, Satoshi*; Takami, Ryu*; Fueda, Kazuki*; Onuki, Toshihiko*; Jegou, C.*; Laffolley, H.*; et al.

Journal of Nuclear Science and Technology, 59(1), p.1 - 24, 2022/01

 Times Cited Count:15 Percentile:71.66(Nuclear Science & Technology)

Journal Articles

Development of MA separation process with TEHDGA/SiO$$_{2}$$-P for an advanced reprocessing

Horiuchi, Yusuke; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Kida, Fukuka*; Arai, Tsuyoshi*

Journal of Radioanalytical and Nuclear Chemistry, 330(1), p.237 - 244, 2021/10

 Times Cited Count:6 Percentile:65.59(Chemistry, Analytical)

Applicability of tetra2-ehylhexyl diglycolamide (TEHDGA) impregnated adsorbent for minor actinide (MA) recovery from high level liquid waste (HLLW) in extraction chromatography technology was investigated through batch-wise adsorption and column separation experiments. Distribution ratio of representative fission product elements were obtained by the batch-wise experiments, and TEHDGA adsorbent was shown to be preferable to TODGA adsorbent for decontamination of several species. All Ln(III) supplied into the TEHDGA adsorbent packed column was properly eluted from the column, and the applicability of the adsorbent was successfully showed by this study.

Journal Articles

General overview of the research project investigating the radionuclide solution behavior in mock mortar matrix modeled after conditions at the Fukushima-Daiichi Nuclear Power Station

Igarashi, Go*; Haga, Kazuko*; Yamada, Kazuo*; Aihara, Haruka; Shibata, Atsuhiro; Koma, Yoshikazu; Maruyama, Ippei*

Journal of Advanced Concrete Technology, 19(9), p.950 - 976, 2021/09

 Times Cited Count:5 Percentile:39.74(Construction & Building Technology)

Journal Articles

Oxidative decomposition of ammonium ion with ozone in the presence of cobalt and chloride ions for the treatment of radioactive liquid waste

Aihara, Haruka; Watanabe, So; Shibata, Atsuhiro; Mahardiani, L.*; Otomo, Ryoichi*; Kamiya, Yuichi*

Progress in Nuclear Energy, 139, p.103872_1 - 103872_9, 2021/09

 Times Cited Count:2 Percentile:31.78(Nuclear Science & Technology)

JAEA Reports

Comprehensive treatment of radioactive liquid waste of Chemical Processing Facility

Ogi, Hiromichi*; Arai, Yoichi; Aihara, Haruka; Watanabe, So; Shibata, Atsuhiro; Nomura, Kazunori

JAEA-Technology 2021-007, 27 Pages, 2021/06

JAEA-Technology-2021-007.pdf:2.43MB

Chemical Processing Facility (CPF) of Japan Atomic Energy Agency (JAEA) has been developing the fast reactor fuel reprocessing and vitrification technology. The various kinds of radioactive liquid wastes, which were generated by those experiments and analysis, stored in the hot cells and glove boxes of CPF. The treatment of radioactive liquid wastes were started since July 2015; however, treatment of several kinds of liquid wastes are revealed to be difficult due to contain the various hazardous chemicals. Therefore, in order to establish the new technology suitable for radioactive liquid waste treatment, several collaborative research programs with several universities and national research organizations were started. The combined project lead by JAEA was named to be STRAD (Systematic Treatments of Radioactive liquid wastes for Decommissioning) project. In this project, the process flow for treatment of several actual liquid wastes were established. In this report, treated method and progress of actual liquid wastes of CPF are summarized.

Journal Articles

A Project focusing on the contamination mechanism of concrete after the accident at Fukushima Daiichi Nuclear Power Plant

Yamada, Kazuo*; Maruyama, Ippei*; Haga, Kazuko*; Igarashi, Go*; Aihara, Haruka; Tomita, Sayuri*; Kiran, R.*; Osawa, Norihisa*; Shibata, Atsuhiro; Shibuya, Kazutoshi*; et al.

Proceedings of International Waste Management Symposia 2021 (WM2021) (CD-ROM), 10 Pages, 2021/03

Journal Articles

Influence of plutonyl ion on electrochemical characterization of zirconium in plutonium nitrate solutions

Nakahara, Masaumi; Sano, Yuichi; Nomura, Kazunori

Radiochimica Acta, 108(9), p.701 - 706, 2020/09

 Times Cited Count:0 Percentile:0.01(Chemistry, Inorganic & Nuclear)

To evaluate the corrosion behavior of a Pu evaporator made from Zr in a reprocessing plant, the influence of PuO$$_{2}$$$$^{2+}$$ was investigated with Pu nitrate solutions in electrochemical experiments. The maximum open circuit potential of Zr in the Pu nitrate solution was approximately 1 V in the Pu nitrate solution containing 7 mol dm$$^{-3}$$ HNO$$_{3}$$. However, there were no significant changes at high PuO$$_{2}$$$$^{2+}$$ concentrations, and Zr showed high corrosion resistance under our experimental conditions.

Journal Articles

Microscopic analyses on Zr adsorbed IDA chelating resin by PIXE and EXAFS

Arai, Yoichi; Watanabe, So; Ono, Shimpei; Nomura, Kazunori; Nakamura, Fumiya*; Arai, Tsuyoshi*; Seko, Noriaki*; Hoshina, Hiroyuki*; Hagura, Naoto*; Kubota, Toshio*

Nuclear Instruments and Methods in Physics Research B, 477, p.54 - 59, 2020/08

 Times Cited Count:5 Percentile:45.45(Instruments & Instrumentation)

Journal Articles

Quantitative analysis of Zr adsorbed on IDA chelating resin using Micro-PIXE

Arai, Yoichi; Watanabe, So; Ono, Shimpei; Nomura, Kazunori; Nakamura, Fumiya*; Arai, Tsuyoshi*; Seko, Noriaki*; Hoshina, Hiroyuki*; Kubota, Toshio*

QST-M-23; QST Takasaki Annual Report 2018, P. 59, 2020/03

Journal Articles

Improvement in flow-sheet of extraction chromatography for trivalent minor actinides recovery

Watanabe, So; Senzaki, Tatsuya; Shibata, Atsuhiro; Nomura, Kazunori; Takeuchi, Masayuki; Nakatani, Kiyoharu*; Matsuura, Haruaki*; Horiuchi, Yusuke*; Arai, Tsuyoshi*

Journal of Radioanalytical and Nuclear Chemistry, 322(3), p.1273 - 1277, 2019/12

 Times Cited Count:4 Percentile:31.89(Chemistry, Analytical)

Journal Articles

A Review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments

Baron, P.*; Cornet, S. M.*; Collins, E. D.*; DeAngelis, G.*; Del Cul, G.*; Fedorov, Y.*; Glatz, J. P.*; Ignatiev, V.*; Inoue, Tadashi*; Khaperskaya, A.*; et al.

Progress in Nuclear Energy, 117, p.103091_1 - 103091_24, 2019/11

 Times Cited Count:73 Percentile:94.03(Nuclear Science & Technology)

The results of an international review of separation processes for spent nuclear fuel (SNF) recycling in future closed fuel cycles with the evaluation of Technology Readiness Level are reported. This study was made by the Expert Group on Fuel Recycling Chemistry (EGFRC) organised by the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD). A unique feature of this study was that processes were classified according to a hierarchy of separations aimed at different elements within spent fuel (uranium; uranium-plutonium co-recovery; minor actinides; high heat generating radionuclides) and also the Head-end processes, used to prepare the SNF for chemical separation, were included. Separation processes covered both wet (hydrometallurgical) and dry (pyro-chemical) processes.

Journal Articles

Stabilization processing of hazardous and radioactive liquid wastes derived from advanced aqueous separation experiments for safety handling and management of waste

Nakahara, Masaumi; Watanabe, So; Ogi, Hiromichi*; Arai, Yoichi; Aihara, Haruka; Motoyama, Risa; Shibata, Atsuhiro; Nomura, Kazunori; Kajinami, Akihiko*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.66 - 70, 2019/09

A wide variety of hazardous and radioactive liquid waste has generated derived from an advanced aqueous separation experiments in the Chemical Processing Facility. Therefore, they should be stabilized for the safety handling and management. In this study, we report a precipitation or an oxidation for hazardous materials, a solvent extraction for recovery of nuclear materials, and a concentration of solution by a freeze-drying method.

Journal Articles

Waste management in a Hot Laboratory of Japan Atomic Energy Agency, 3; Volume reduction and stabilization of solid waste

Nakahara, Masaumi; Watanabe, So; Ogi, Hiromichi*; Shibata, Atsuhiro; Nomura, Kazunori

International Journal of Nuclear and Quantum Engineering (Internet), 13(4), p.191 - 194, 2019/04

High level radioactive solid waste is reduced the volume or stabilized in the Chemical Processing Facility in the Japan Atomic Energy Agency. A plastic product is molten with a heating mantle and reduced the volume. A non-flammable such as metal is cut with a band saw machine for reducing the volume. A used adsorbent in the extraction chromatograph process was heated with an electric furnace using non-radioactive materials, and the experimental result suggests that organic materials in the used adsorbent were decomposed stably.

Journal Articles

New project on the analysis of contamination mechanisms of concrete at the Fukushima Daiichi Nuclear Power Station

Yamada, Kazuo*; Maruyama, Ippei*; Koma, Yoshikazu; Haga, Kazuko*; Igarashi, Go*; Shibuya, Kazutoshi*; Aihara, Haruka

Proceedings of International Waste Management Symposia 2019 (WM2019) (CD-ROM), 6 Pages, 2019/03

Journal Articles

Waste management in a Hot Laboratory of Japan Atomic Energy Agency, 1; Overview and activities in chemical processing facility

Nomura, Kazunori; Ogi, Hiromichi*; Nakahara, Masaumi; Watanabe, So; Shibata, Atsuhiro

International Journal of Nuclear and Quantum Engineering (Internet), 13(5), p.209 - 212, 2019/00

Journal Articles

Analysis on adsorbent for spent solvent treatment by micro-PIXE and EXAFS

Arai, Yoichi; Watanabe, So; Ono, Shimpei; Nakamura, Masahiro; Shibata, Atsuhiro; Nakamura, Fumiya*; Arai, Tsuyoshi*; Seko, Noriaki*; Hoshina, Hiroyuki*; Hagura, Naoto*; et al.

International Journal of PIXE, 29(1&2), p.17 - 31, 2019/00

The spent PUREX solvent containing U and Pu is generated from the reprocessing process of spent nuclear fuel. The nuclear material removal is important for the safe storage or disposal of the spent solvent. Our previous study revealed that the adsorbent with the iminodiacetic acid (IDA) functional group is one of the most promising materials for designing the nuclear material recovery process. Accordingly, an IDA-type adsorbent was synthesized by using graft polymerization technology or a chemical reaction to improve the adsorption rate and capacity. The synthesized IDA-type adsorbent was characterized by micro particle-induced X-ray emission (PIXE) and extended X-ray absorption fine structure (EXAFS) analyses. The micro-PIXE analysis revealed that Zr was adsorbed on the whole synthesized adsorbents and quantified the microamount of adsorbed Zr. Moreover, EXAFS suggested that Zr in the aqueous solution and solvent can be trapped by the IDA group with different mechanisms.

236 (Records 1-20 displayed on this page)