Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 89

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Data report of ROSA/LSTF experiment SB-SL-01; Main steam line break accident

Takeda, Takeshi

JAEA-Data/Code 2020-019, 58 Pages, 2021/01

JAEA-Data-Code-2020-019.pdf:3.85MB

An experiment denoted as SB-SL-01 was conducted on March 27, 1990 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-IV (ROSA-IV) Program. The ROSA/LSTF experiment SB-SL-01 simulated a main steam line break (MSLB) accident in a pressurized water reactor (PWR). The test assumptions were made such as auxiliary feedwater (AFW) injection into secondary-side of both steam generators (SGs) and coolant injection from high pressure injection (HPI) system of emergency core cooling system into cold legs in both loops. The MSLB led to a fast depressurization of broken SG, which caused a decrease in the broken SG secondary-side wide-range liquid level. The broken SG secondary-side wide-range liquid level recovered because of the AFW injection into the broken SG secondary-side. The primary pressure temporarily decreased a little just after the MSLB, and increased up to 16.1 MPa following the closure of the SG main steam isolation valves. Coolant was manually injected from the HPI system into cold legs in both loops a few minutes after the primary pressure reduced to below 10 MPa. The primary pressure raised due to the HPI coolant injection, but was kept at less than 16.2 MPa by fully opening a power-operated relief valve of pressurizer. The core was filled with subcooled liquid through the experiment. Thermal stratification was seen in intact loop cold leg during the HPI coolant injection owing to the flow stagnation. On the other hand, significant natural circulation prevailed in broken loop. When the continuous core cooling was ensured by the successive coolant injection from the HPI system, the experiment was terminated. The experimental data obtained would be useful to consider recovery actions and procedures in the multiple fault accident with the MSLB of PWR. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-SL-01.

Journal Articles

Major outcomes through recent ROSA/LSTF experiments and future plans

Takeda, Takeshi; Wada, Yuki; Shibamoto, Yasuteru

World Journal of Nuclear Science and Technology, 11(1), p.17 - 42, 2021/01

Journal Articles

Analyses of LSTF experiment and PWR plant for 5% cold-leg break loss of coolant accident

Watanabe, Tadashi*; Ishigaki, Masahiro*; Katsuyama, Jinya

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 9 Pages, 2018/10

The analyses of LSTF experiment and PWR plant for 5% cold-leg break LOCA are performed using the RELAP5/MOD3.3 code. The discharge coefficient of critical flow model is determined so as to obtain the agreement of pressure transient between the LSTF experiment and the experimental analysis, and used for the PWR analysis. The characteristics of thermal-hydraulic phenomena in the experiment are shown to be simulated well by the two analyses. The decrease in core differential pressure during the loop-seal clearing is, however, underestimated by the two analyses, and the core heat up is not predicted. The loop flow rates are also underestimated by the two analyses. Although the duration of core heat up during the boil-off period is longer in the experimental analysis, the results of two analyses agree well, and the effect of scaling is found to be small between the experimental analysis and the PWR analysis.

Journal Articles

ROSA/LSTF test on nitrogen gas behavior during reflux condensation in PWR and RELAP5 code analyses

Takeda, Takeshi; Otsu, Iwao

Mechanical Engineering Journal (Internet), 5(4), p.18-00077_1 - 18-00077_14, 2018/08

Journal Articles

Uncertainty analysis of ROSA/LSTF test by RELAP5 code and PKL counterpart test concerning PWR hot leg break LOCAs

Takeda, Takeshi; Otsu, Iwao

Nuclear Engineering and Technology, 50(6), p.829 - 841, 2018/08

 Times Cited Count:6 Percentile:19.24(Nuclear Science & Technology)

Journal Articles

Some characteristics of gas-liquid two-phase flow in vertical large-diameter channels

Shen, X.*; Schlegel, J. P.*; Hibiki, Takashi*; Nakamura, Hideo

Nuclear Engineering and Design, 333, p.87 - 98, 2018/07

 Times Cited Count:5 Percentile:62.02(Nuclear Science & Technology)

JAEA Reports

Data report of ROSA/LSTF experiment SB-SG-10; Recovery actions from multiple steam generator tube rupture accident

Takeda, Takeshi

JAEA-Data/Code 2018-004, 64 Pages, 2018/03

JAEA-Data-Code-2018-004.pdf:3.33MB

Experiment SB-SG-10 was conducted on November 17, 1992 using LSTF. Experiment simulated recovery actions from multiple steam generator (SG) tube rupture accident in PWR. Primary pressure was kept higher than broken SG secondary-side pressure due to coolant injection from high pressure injection (HPI) system into cold and hot legs even after start of full opening of intact SG relief valve (RV). Full opening of power-operated relief valve (PORV) in pressurizer (PZR) resulted in pressure equalization between primary and broken SG systems as well as PZR liquid level recovery. Broken SG RV opened once after start of intact SG RV full opening. Core was filled with saturated or subcooled liquid through experiment. Significant natural circulation prevailed in intact loop after start of intact SG RV full opening. Significant thermal stratification appeared in hot legs especially during time period of HPI coolant injection into hot legs.

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-07; 1% Pressure vessel top break LOCA with accident management actions and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2018-003, 60 Pages, 2018/03

JAEA-Data-Code-2018-003.pdf:3.68MB

Experiment SB-PV-07 was conducted on June 9, 2005 using LSTF. Experiment simulated 1% pressure vessel top small-break LOCA in PWR under total failure of HPI system and nitrogen gas inflow to primary system from ACC tanks. Liquid level in upper-head was found to control break flow rate. Coolant was started to manually inject from HPI system into cold legs as first accident management (AM) action when maximum core exit temperature reached 623 K. Fuel rod surface temperature largely increased because of late and slow response of core exit temperature. SG secondary-side depressurization was initiated by fully opening relief valves as second AM action when primary pressure decreased to 4 MPa. However, second AM action was not effective on primary depressurization until SG secondary-side pressure decreased to primary pressure. Pressure difference became larger between primary and SG secondary sides after ACC tanks started to discharge nitrogen gas.

Journal Articles

Considerations on phenomena scaling for BEPU

Nakamura, Hideo

Proceedings of ANS International Conference on Best Estimate Plus Uncertainties Methods (BEPU 2018) (USB Flash Drive), 8 Pages, 2018/00

no abstracts in English

Journal Articles

ROSA/LSTF tests and posttest analyses by RELAP5 code for accident management measures during PWR station blackout transient with loss of primary coolant and gas inflow

Takeda, Takeshi; Otsu, Iwao

Science and Technology of Nuclear Installations, 2018, p.7635878_1 - 7635878_19, 2018/00

 Times Cited Count:2 Percentile:59.15(Nuclear Science & Technology)

Journal Articles

RELAP5 uncertainty evaluation using ROSA/LSTF test data on PWR 17% cold leg intermediate-break LOCA with single-failure ECCS

Takeda, Takeshi; Otsu, Iwao

Annals of Nuclear Energy, 109, p.9 - 21, 2017/11

 Times Cited Count:4 Percentile:42.69(Nuclear Science & Technology)

Journal Articles

ROSA/LSTF test and RELAP5 analyses on PWR cold leg small-break LOCA with accident management measure and PKL counterpart test

Takeda, Takeshi; Otsu, Iwao

Nuclear Engineering and Technology, 49(5), p.928 - 940, 2017/08

 Times Cited Count:3 Percentile:53.18(Nuclear Science & Technology)

Journal Articles

ROSA/LSTF test on nitrogen gas behavior during reflux cooling in PWR and RELAP5 post-test analysis

Takeda, Takeshi; Otsu, Iwao

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 11 Pages, 2017/07

Journal Articles

Multi-dimensional gas-liquid two-phase flow in vertical large-diameter channels

Shen, X.*; Schlegel, J. P.*; Hibiki, Takashi*; Nakamura, Hideo

Proceedings of 2017 Japan-US Seminar on Two-Phase Flow Dynamics (JUS 2017), 6 Pages, 2017/06

JAEA Reports

Data report of ROSA/LSTF experiment TR-LF-07; Loss-of-feedwater transient with primary feed-and-bleed operation

Takeda, Takeshi

JAEA-Data/Code 2016-004, 59 Pages, 2016/07

JAEA-Data-Code-2016-004.pdf:3.34MB

The TR-LF-07 test simulated a loss-of-feedwater transient in a PWR. A SI signal was generated when steam generator (SG) secondary-side collapsed liquid level decreased to 3 m. Primary depressurization was initiated by fully opening a power-operated relief valve (PORV) of pressurizer (PZR) 30 min after the SI signal. High pressure injection (HPI) system was started in loop with PZR 12 s after the SI signal, while it was initiated in loop without PZR when the primary pressure decreased to 10.7 MPa. The primary and SG secondary pressures were kept almost constant because of cycle opening of the PZR PORV and SG relief valves. The PZR liquid level began to drop steeply following the PORV full opening, which caused liquid level formation at the hot leg. The primary pressure became lower than the SG secondary pressure, which resulted in the actuation of accumulator (ACC) system in both loops. The primary feed-and-bleed operation was effective to core cooling because of no core uncovery.

Journal Articles

Contributions of OECD ROSA & ROSA-2 Projects for thermal-hydraulic code validation

Nakamura, Hideo

Proceedings of Seminar on the Transfer of Competence, Knowledge and Experience gained through CSNI Activities in the Field of Thermal-Hydraulics (THICKET 2016) (CD-ROM), 29 Pages, 2016/06

no abstracts in English

JAEA Reports

Data report of ROSA/LSTF experiment SB-HL-12; 1% Hot leg break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2015-022, 58 Pages, 2016/01

JAEA-Data-Code-2015-022.pdf:3.31MB

The SB-HL-12 test simulated PWR 1% hot leg SBLOCA under assumptions of total failure of HPI system and non-condensable gas (nitrogen gas) inflow. SG depressurization by fully opening relief valves in both SGs as AM action was initiated immediately after maximum fuel rod surface temperature reached 600 K. After AM action due to first core uncovery by core boil-off, the primary pressure decreased, causing core mixture level swell. The fuel rod surface temperature then increased up to 635 K. Second core uncovery by core boil-off took place before LSC induced by steam condensation on ACC coolant injected into cold legs. The core liquid level recovered rapidly after LSC. The fuel rod surface temperature then increased up to 696 K. The pressure difference became larger between the primary and SG secondary sides after nitrogen gas inflow. Third core uncovery by core boil-off occurred during reflux condensation. The maximum fuel rod surface temperature exceeded 908 K.

Journal Articles

ROSA/LSTF tests and RELAP5 posttest analyses for PWR safety system using steam generator secondary-side depressurization against effects of release of nitrogen gas dissolved in accumulator water

Takeda, Takeshi; Onuki, Akira*; Kanamori, Daisuke*; Otsu, Iwao

Science and Technology of Nuclear Installations, 2016, p.7481793_1 - 7481793_15, 2016/00

AA2016-0048.pdf:5.15MB

 Times Cited Count:1 Percentile:84.04(Nuclear Science & Technology)

JAEA Reports

Assessment report of research and development on "Nuclear Safety Research" in FY2014 (Post- and pre-review report)

Kudo, Tamotsu; Onizawa, Kunio*; Nakamura, Takehiko

JAEA-Evaluation 2015-011, 209 Pages, 2015/11

JAEA-Evaluation-2015-011.pdf:10.36MB

Japan Atomic Energy Agency (JAEA) consulted an assessment committee, "Evaluation Committee of Research and Development (R&D) Activities for Nuclear Safety", for post- and pre-review assessment of R&D on nuclear safety research. In response to JAEA's request, the Committee assessed mainly the progress of the R&D project according to guidelines, which addressed the rationale behind the R&D project, the relevance of the project outcome and the efficiency of the project implementation during the period of the current and next plan. As a result, the Committee concluded that the progress of the R&D project is satisfactory. This report describes the results of evaluation by the Committee. In addition, the appendix of this report contains presentations used for the evaluation, and responses from JAEA on the comments from the member of the Committee.

Journal Articles

ROSA/LSTF experiment on a PWR station blackout transient with accident management measures and RELAP5 analyses

Takeda, Takeshi; Otsu, Iwao

Mechanical Engineering Journal (Internet), 2(5), p.15-00132_1 - 15-00132_15, 2015/10

89 (Records 1-20 displayed on this page)