Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1366

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Zeolite-assisted radiolysis of aromatic chlorides mitigating influence of coexisting ions in water matrix

Kumagai, Yuta; Kimura, Atsushi*; Taguchi, Mitsumasa*; Watanabe, Masayuki

Radiation Physics and Chemistry, 191, p.109831_1 - 109831_8, 2022/02

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

In this study, we investigated and compared the effects of a high-silica zeolite (HMOR) on the radiation-induced degradation of three aromatic chlorides, 2-chlorophenol (2-ClPh), 2-chloroaniline (2-ClAn), and 2-chlorobenzoic acid (2-ClBA), in order to examine its potential to reduce the influence of ions in water matrix in the irradiation treatment of water-soluble organic compounds. In the presence of ions reactive to radicals, the degradation of 2-ClPh in water was inhibited, but the combined use of HMOR much improved the degradation yield. This improvement was attributed to high performance of HMOR in adsorption of 2-ClPh. Similarly, HMOR was effective for adsorption of 2-ClAn and facilitated the 2-ClAn degradation by irradiation. In contrast, HMOR was poor at adsorption of 2-ClBA and consistently the degradation of 2-ClBA in the water-HMOR mixture was inhibited by the radical scavenger. These results demonstrate that HMOR can mitigate the influence of radical scavengers in water.

Journal Articles

Effect of gamma-ray irradiation on corrosion of stainless steel contacted with Zeolite particle

Kato, Chiaki; Yamagishi, Isao; Sato, Tomonori; Yamamoto, Masahiro*

Zairyo To Kankyo, 70(12), p.441 - 447, 2021/12

Zeolite particles have been used in a Cs adsorption vessel for purification of contaminated water in Fukushima Dai-ich Nuclear Power Station (1F). The used Cs adsorption vessels were kept in storage space on 1F site. The risk of localized corrosion of stainless steel used in the vessel was worried. To evaluate the risk of localized corrosion, using specially designed electrochemical testing apparatus was used under gamma-ray irradiation test. And, real size mock-up test conducted. The results showed the potential change caused by creation of H$$_{2}$$O$$_{2}$$ by water radiolysis decreased by zeolite particles and the enrichment of chloride ion concentration in the vessel do not propagate during dry up procedure of Cs adsorption vessel. These data indicate the risk of localized corrosion of Cs adsorption vessel may stay at considerably low level.

Journal Articles

Safety assessment of adsorbent for extraction chromatography and effect on radiation of separation operation

Miyazaki, Yasunori; Sano, Yuichi

Hoshasen Kagaku (Internet), (112), p.27 - 32, 2021/11

no abstracts in English

Journal Articles

Measurement and evaluation of hydrogen production from mixtures of seawater and zeolite in decontamination of radioactive water

Kumagai, Yuta; Nagaishi, Ryuji; Kimura, Atsushi*; Taguchi, Mitsumasa*; Nishihara, Kenji; Yamagishi, Isao; Ogawa, Toru

Insights Concerning the Fukushima Daiichi Nuclear Accident, Vol.4; Endeavors by Scientists, p.37 - 45, 2021/10

Zeolite adsorbents are to be used for decontamination of radioactive water in Fukushima Dai-ichi Nuclear Power Station. Evaluation of hydrogen production by water radiolysis during decontamination is important for safe operation. Thus hydrogen production from the mixture of zeolite adsorbents and seawater was studied because seawater was urgently used as a coolant for the fuels. The hydrogen yield from the mixture decreased at a high weight fraction of zeolites. However, the measured yield was higher than the yield expected from the direct radiolysis of seawater in the mixture, which would decrease proportional to the weight fraction of seawater. The result suggests that the radiation energy deposited to zeolites was involved in the hydrogen formation. From the results, the hydrogen production rate was evaluated to be 3.6 mL/h per ton of radioactive water before decontamination. After the process, it was evaluated to be 1.5 L/h per ton of waste adsorbents due to the high dose rate.

JAEA Reports

Database for corrosion under irradiation conditions (Contract research)

Sato, Tomonori; Hata, Kuniki; Kaji, Yoshiyuki; Ueno, Fumiyoshi; Inoue, Hiroyuki*; Taguchi, Mitsumasa*; Seito, Hajime*; Tada, Eiji*; Abe, Hiroshi*; Akiyama, Eiji*; et al.

JAEA-Review 2021-001, 123 Pages, 2021/06

JAEA-Review-2021-001.pdf:10.33MB

In the implement of the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), there are many problems to be solved. Specially, the mitigation of the aging degradation by the corrosion of the structural materials is important to implement the decommissioning safely and continuously. However, there are limited data for the environmental factors of corrosion in 1F, and the condition of 1F is continuously changing. So, the literature data for the water radiolysis and the corrosion under irradiation are listed as the database of corrosion under irradiation in this report. And the new obtained radiolysis and corrosion data, which have not been reported in the literature and will be required in the decommissioning of 1F, are reported.

Journal Articles

Study on gamma-ray-degradation of adsorbent for low pressure-loss extraction chromatography

Miyazaki, Yasunori; Sano, Yuichi; Okamura, Nobuo; Watanabe, Masayuki; Koka, Masashi*

QST-M-29; QST Takasaki Annual Report 2019, P. 72, 2021/03

no abstracts in English

Journal Articles

On the hydrogen production of geopolymer wasteforms under irradiation

Cantarel, V.; Arisaka, Makoto; Yamagishi, Isao

Journal of the American Ceramic Society, 102(12), p.7553 - 7563, 2019/12

 Times Cited Count:8 Percentile:29.81(Materials Science, Ceramics)

The hydrogen gas (H$$_{2}$$) production of wasteforms is a major safety concern for encapsulating nuclear wastes. For geopolymers, the H$$_{2}$$ produced by radiolytic processes is a key factor because of the large amount of water present in their porous structure. Herein, the hydrogen production was measured under $$^{60}$$Co gamma irradiation. The effect of water saturation and sample size were studied for pure geopolymers, or using zeolites as an example waste. When geopolymer monolithic samples were large and saturated by water, the hydrogen released was measured up to two orders of magnitude lower with a 40 cm long cylinder samples (1.9$$times$$10$$^{-10}$$ mol/J) than a sample in powder form (2.2$$times$$10$$^{-8}$$ mol/J). To interpret results, a simple model was used, considering only hydrogen production, a potential recombination and its diffusion in the geopolymer matrix. Knowing the diffusion constant of the matrix, the model was able to reproduce the evolution of the hydrogen release as a function of the water saturation level and predict the evolution when sample size is increased up to 40 cm.

Journal Articles

Study on hydrogen generation from cement solidified products loading low-level radioactive liquid wastes at Tokai Reprocessing Plant

Sato, Fuminori; Matsushima, Ryotatsu; Ito, Yoshiyuki

QST-M-16; QST Takasaki Annual Report 2017, P. 60, 2019/03

Hydrogen gas generation by $$gamma$$-radiation from cement solidified products loading low-level radioactive liquid waste generated at LWTF in Tokai Reprocessing Facility was studied.

Journal Articles

Development of radiation resistant monitoring system in light water reactor

Takeuchi, Tomoaki; Otsuka, Noriaki; Nakano, Hiroko; Iida, Tatsuya*; Ozawa, Osamu*; Shibagaki, Taro*; Komanome, Hirohisa*; Tsuchiya, Kunihiko

QST-M-16; QST Takasaki Annual Report 2017, P. 67, 2019/03

no abstracts in English

Journal Articles

Development of remote sensing technique using radiation resistant optical fibers under high-radiation environment

Ito, Chikara; Naito, Hiroyuki; Ishikawa, Takashi; Ito, Keisuke; Wakaida, Ikuo

JPS Conference Proceedings (Internet), 24, p.011038_1 - 011038_6, 2019/01

A high-radiation resistant optical fiber has been developed in order to investigate the interiors of the reactor pressure vessels and the primary containment vessels at the Fukushima Daiichi Nuclear Power Station. The tentative dose rate in the reactor pressure vessels is assumed to be up to 1 kGy/h. We developed a radiation resistant optical fiber consisting of a 1000 ppm hydroxyl doped pure silica core and 4 % fluorine doped pure silica cladding. We attempted to apply the optical fiber to remote imaging technique by means of fiberscope. The number of core image fibers was increased from 2000 to 22000 for practical use. The transmissive rate of infrared images was not affected after irradiation of 1 MGy. No change in the spatial resolution of the view scope by means of image fiber was noted between pre- and post-irradiation. We confirmed the applicability of the probing system, which consists of a view scope using radiation-resistant optical fibers.

Journal Articles

Development of radiation resistant monitoring camera system

Takeuchi, Tomoaki; Otsuka, Noriaki; Watanabe, Takashi*; Tanaka, Shigeo*; Ozawa, Osamu*; Komanome, Hirohisa*; Ueno, Shunji*; Tsuchiya, Kunihiko

Proceedings of 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2017) (Internet), 3 Pages, 2018/11

no abstracts in English

Journal Articles

Evaluation of in-water wireless transmission system under the conditions simulated the severe accident

Otsuka, Noriaki; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Shibagaki, Taro*; Komanome, Hirohisa*

Proceedings of 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2017) (Internet), 3 Pages, 2018/11

no abstracts in English

Journal Articles

Challenge of decommissioning of Fukushima I Nuclear Power Plant, 4; Development of radiation resistant image sensor

Watanabe, Takashi*; Ozawa, Osamu*; Takeuchi, Tomoaki

Denki Gakkai-Shi, 138(8), p.529 - 534, 2018/08

no abstracts in English

Journal Articles

Radiation-induced degradation of aqueous 2-chlorophenol assisted by zeolites

Kumagai, Yuta; Kimura, Atsushi*; Taguchi, Mitsumasa*; Watanabe, Masayuki

Journal of Radioanalytical and Nuclear Chemistry, 316(1), p.341 - 348, 2018/04

 Times Cited Count:2 Percentile:20.93(Chemistry, Analytical)

We studied effect of adsorption and condensation by zeolites on radiation-induced degradation of aqueous 2-chlorophenol (2-ClPh). This study aims to demonstrate that the solid-phase extraction using zeolites has potential advantage in treatments of aqueous organic pollutants. Among three zeolites examined in this study, a mordenite type zeolite (HMOR) that has a high Si to Al ratio (127 $$pm$$ 3) exhibited preferable performance as the matrix for the 2-ClPh degradation. HMOR adsorbed far more 2-ClPh than the other zeolites, which have lower Si/Al ratios. The irradiation of HMOR induced degradation of adsorbed 2-ClPh into Cl$$^{-}$$ and organic by-products. We found a significant increase in Cl$$^{-}$$ production by HMOR. The yield of Cl$$^{-}$$ production in the presence of HMOR was as high as the yield in aqueous solution of 2-ClPh at a concentration 10 times higher. The increased Cl$$^{-}$$ production indicates that the high concentration of adsorbed 2-ClPh led to effective use of the adsorbed energy of HMOR.

JAEA Reports

Investigative report on the PVC bag burst in the contamination incident at Plutonium Fuel Research Facility; Radiolysis of organic materials and raising of internal pressure

Cause Investigation Team for the PFRF Contamination Incident

JAEA-Review 2017-038, 83 Pages, 2018/03

JAEA-Review-2017-038.pdf:11.37MB

The contaminated accident occurred at Plutonium Fuel Research Facility on June, 2017. The PVC bag packaging in a fuel storage container burst when a worker opened the lid, and a part of contents (uranium and plutonium) was spattered over the room. In order to clarify the cause of the burst, the Cause Unfolding Team collected information concerning characteristics of the contents from any past records and interview. And then we observed and analyzed the contents in a glove box. We also performed experiments on radiolysis of organic materials, degradation of PVC bag by $$gamma$$ radiation, and PVC bag burst. Based on fault tree analysis, finally we concluded that the main gas generation source was alpha radiolysis of the epoxy resin mixed with the fuel powder. We hope that the calculation procedures for the gas generation and the inner pressure transition described in this report can be useful reference for the management of fuel storage in other facilities.

Journal Articles

Rust and corrosion mechanism of carbon steel in dilute chloride solution at low dose rates

Motooka, Takafumi

QST-M-8; QST Takasaki Annual Report 2016, P. 73, 2018/03

Previous corrosion test of carbon steel in dilute artificial seawater under Co-60 $$gamma$$-ray irradiation has indicated that corrosion rate was enhanced at absorbed dose rates: $$>$$100 Gy/h and rust color was changed from black to dark brown. In the present study, the corrosion mechanism of carbon steel under Co-60 $$gamma$$-ray irradiation was investigated by identification of rust. $$gamma$$ rays enhanced oxidation of iron ions from di-valent to tri-valent. Rust formed under irradiation had higher oxidation state.

Journal Articles

Investigation of hydrogen gas generation by radiolysis for cement-solidified products of used adsorbents for water decontamination

Sato, Junya; Kikuchi, Hiroshi*; Kato, Jun; Sakakibara, Tetsuro; Matsushima, Ryotatsu; Sato, Fuminori; Kojima, Junji; Nakazawa, Osamu

QST-M-8; QST Takasaki Annual Report 2016, P. 62, 2018/03

no abstracts in English

JAEA Reports

Degradation behavior of optical components by gamma irradiation (Contract research)

Takeuchi, Tomoaki; Shibata, Hiroshi; Hanakawa, Hiroki; Uehara, Toshiaki*; Ueno, Shunji*; Tsuchiya, Kunihiko; Kumahara, Hajime*; Shibagaki, Taro*; Komanome, Hirohisa*

JAEA-Technology 2017-026, 26 Pages, 2018/02

JAEA-Technology-2017-026.pdf:4.0MB

Under severe accidents, high-integrity transmission techniques are necessary so as to monitor the situation of the nuclear power plant. In this study, effects of gamma irradiation up to 10$$^{6}$$Gy on properties of optical devices were evaluated toward the development of a radiation-resistant in-water wireless transmission system using visible light. After the irradiation, for the LEDs, the total luminous flux decreased and the browning of resin lenses occurred. Meanwhile, the current-voltage characteristics hardly changed. For the PDs, the light sensitivity decreased and the browning of resin window occurred. The dark currents of PDs did not become large enough to adversely affect transmission. These results indicated that both the decreases of the total luminous flux of the LEDs and the light sensitivity of the PDs were mainly caused by not the degradation of the semiconductor parts but the browning of the resin parts by the irradiation. In addition, basic decrease behaviors of light transmission of several different types of glasses by gamma irradiation were also obtained so as to select the suitable optical windows and filters for the developing radiation-resistant in-water wireless transmission system.

Journal Articles

Development of a water purifier for radioactive cesium removal from contaminated natural water by radiation-induced graft polymerization

Seko, Noriaki*; Hoshina, Hiroyuki*; Kasai, Noboru*; Shibata, Takuya; Saiki, Seiichi*; Ueki, Yuji*

Radiation Physics and Chemistry, 143, p.33 - 37, 2018/02

 Times Cited Count:16 Percentile:85.18(Chemistry, Physical)

Journal Articles

Treatment of pharmaceuticals/antibiotics in wastewater by combination of zeolite adsorbent with ionizing radiation

Taguchi, Mitsumasa*; Kumagai, Yuta; Kimura, Atsushi*

IAEA-TECDOC-1855, p.106 - 116, 2018/00

The technology for the decomposition of trace amounts of halogenated pharmaceuticals/antibiotics was developed in wastewater by use of the combination method of zeolite adsorbent and ionizing radiation. HMOR, a hydrophobic high-silica mordenite-type zeolite, was employed to concentrate 2-chlorophenol (2-ClPh) as a simple model of halogenated pharmaceuticals/antibiotics. HMOR adsorbed above 99% of 2-ClPh from dilute aqueous solutions. The yield of Cl$$^{-}$$ production in HMOR mixture corresponded to the aqueous solution containing 10 fold higher concentration of dissolved 2-ClPh. Clofibrate and triclosan, one of chlorinated pharmaceuticals/antibiotics, in real wastewater were treated by use of the combination method of HMOR and ionizing radiation. Production yield of Cl$$^{-}$$ by use of the adsorbent was about twice higher than that in aqueous solution, and HMOR was contributed for effective reduction of chlorinated pharmaceuticals/antibiotics in real wastewater.

1366 (Records 1-20 displayed on this page)