Refine your search:     
Report No.
 - 

Damage evaluation techniques for FBR and LWR structural materials based on magnetic and corrosion properties along grain boundaries

Hoshiya, Taiji*; Takaya, Shigeru*; Ueno, Fumiyoshi  ; Nemoto, Yoshiyuki  ; Nagae, Yuji* ; Miwa, Yukio; Abe, Yasuhiro*; Omi, Masao; Tsukada, Takashi ; Aoto, Kazumi*

JAERI and JNC have begun the cooperative research of evaluation techniques of structural material degradation in FBR and LWR, which based on magnetic and corrosion properties along grain boundaries. Magnetic method has been proposed as the one of the non-destructive detection techniques on the early stage of creep-damage before crack initiation for aged structural materials of FBRs. The effects of applied stress on natural magnetization were investigated on paramagnetic stainless steels having creep-damages. On the other hand, corrosion properties and magneto-optical characteristics of ion-irradiated stainless steels in the vicinity of grain boundaries were estimated by AFM and Kerr effect microscope, respectively. These degradations were induced by changes in characteristics in the vicinity of grain boundaries. It is found that the initial level of progressing process of damage can detect changes in magnetic and corrosion properties along grain boundaries of aged and degraded nuclear plants structural materials.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.