Refine your search:     
Report No.
 - 

Sedimentation of substitutional solute atoms in intermetallic compound of Bi-Pb system under ultra-strong gravitational field

Ono, Masao  ; Huang, X.*; Kinoshita, Takahiro*; Ueno, Hideto*; Osakabe, Toyotaka  ; Mashimo, Tsutomu

Ultra-strong gravitational field can induce sedimentation of even atoms in condensed matter. We had realized sedimentation of substitutional solute atoms in some miscible alloys. How about in the other alloys? So, In this study, the ultra-centrifuge experiments were performed on an intermetallic compound of Bi-Pb system (Bi$$_{3}$$Pb$$_{7}$$) by changing time duration of experiment time (experimental conditions; maximum centrifugal force: 1.0$$times$$10$$^{6}$$g level, temperature: 130-150 $$^{circ}$$C, duration: 30-150h, state: solid). Composition changes were observed in the centrifuged samples. And, it was found that the Bi phase appeared from starting state of Bi$$_{3}$$Pb$$_{7}$$ around the weak gravitational field region of the sample. These results showed that sedimentation of substitutional solute atoms occurred, and induced the structure change in intermetallic compounds.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.