Refine your search:     
Report No.

Numerical investigation of cross flow phenomena in a tight-lattice rod bundle using advanced interface tracking method

Zhang, W.; Yoshida, Hiroyuki ; Ose, Yasuo*; Onuki, Akira; Akimoto, Hajime; Hotta, Akitoshi*; Fujimura, Ken*

The innovative Water Reactor for FLexible fuel cycle (FLWR) adopts a tight triangular lattice arrangement with about 1 mm gap between adjacent fuel rods. In view of the importance of accurate prediction of cross flow between subchannels in the evaluation of the boiling transition (BT) in the FLWR core, this study numerically simulated steam-water two-phase cross flow between two modeled subchannels of tight-lattice rod bundle for the FLWR by using a detailed two-phase flow simulation code with an advanced interface tracking method (named TPFIT), statistically evaluated the simulation results, and clarified mechanisms of cross flow for developing a model. The effects of flow pattern, inlet and outlet of mixing section, and gap spacing on cross flow, and the local and general characters of cross flow were extensively investigated.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.