Refine your search:     
Report No.
 - 

Thermal evolution of defects in as-grown and electron-irradiated ZnO studied by positron annihilation

Chen, Z. Q.*; Wang, S. J.*; Maekawa, Masaki; Kawasuso, Atsuo; Naramoto, Hiroshi*; Yuan, X. L.*; Sekiguchi, Takashi*

Vacancy-type defects in as-grown ZnO single crystals have been identified using positron annihilation spectroscopy. The grown-in defects are supposed to be zinc vacancy V$$_{Zn}$$-related defects, and can be easily removed by annealing above 600$$^{circ}$$C. V$$_{Zn}$$-related defects are also introduced in ZnO when subjected to 3 MeV electron irradiation with a dose of 5.5$$times$$10$$^{18}$$ cm$$^{-2}$$. Most of these irradiation-induced V$$_{Zn}$$ are annealed at temperatures below 200$$^{circ}$$C through recombination with the close interstitials. However, after annealing at around 400$$^{circ}$$C, secondary defects are generated. A detailed analysis of the Doppler broadening measurements indicates that the irradiation introduced defects and the annealing induced secondary defects belong to different species. It is also found that positron trapping by these two defects has different temperature dependences. The probable candidates for the secondary defects are tentatively discussed in combination with Raman scattering studies. After annealing at 700$$^{circ}$$C, all the vacancy defects are annealed out. Cathodoluminescence measurements show that V$$_{Zn}$$ is not related to the visible emission at 2.3 eV in ZnO, but would rather act as nonradiative recombination centers.

Accesses

:

- Accesses

InCites™

:

Percentile:87.48

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.