検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley

亜鉛欠乏オオムギにおけるムギネ酸類の生合成と分泌

鈴木 基史*; 高橋 美智子*; 塚本 崇志*; 渡辺 智; 松橋 信平; 矢崎 潤史*; 岸本 直己*; 菊池 尚志*; 中西 啓仁*; 森 敏*; 西澤 直子*

Suzuki, Motofumi*; Takahashi, Michiko*; Tsukamoto, Takashi*; Watanabe, Satoshi; Matsuhashi, Shimpei; Yazaki, Junshi*; Kishimoto, Naoki*; Kikuchi, Shoshi*; Nakanishi, Hiromi*; Mori, Satoshi*; Nishizawa, Naoko*

Mugineic acid family phytosiderophores (MAs) are metal chelators that are produced in graminaceous plants in response to Fe deficiency, but current evidence regarding secretion of MAs during Zn deficiency is contradictory. HPLC analysis showed that Zn deficiency induces the synthesis and secretion of MAs in barley plants. Studies of the genes involved in the methionine cycle using microarray analysis showed that the transcripts of these genes were increased in both Zn-deficient and Fe-deficient barley roots. Analysis using the PETIS confirmed that more $$^{62}$$Zn(II)-MAs than $$^{62}$$Zn$$^{2+}$$ were absorbed by the roots of Zn-deficient barley plants. These data suggest that the increased biosynthesis and secretion of MAs arising from a shortage of Zn are not due to an induced Fe deficiency, and that secreted MAs are effective in absorbing Zn from the soil.

Access

:

- Accesses

InCites™

:

パーセンタイル:95.75

分野:Plant Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.