Refine your search:     
Report No.
 - 

Production of radioisotopes for nuclear medicine using ion-beam technology and its utilization for both therapeutic and diagnostic application in cancer

Iida, Yasuhiko*; Hanaoka, Hirofumi*; Katabuchi, Tatsuya*; Watanabe, Shigeki; Ishioka, Noriko; Watanabe, Satoshi; Matsuhashi, Shimpei; Higuchi, Tetsuya*; Oriuchi, Noboru*; Endo, Keigo*

PET is superior in quantitative measurement, so $$^{18}$$F-FDG-PET is most valuable tool for tumor diagnosis. Although several positron emitters have been used for PET, their uses are limited for their short half-lives. Compared with these radionuclides, $$^{64}$$Cu and $$^{76}$$Br have appropriate properties ($$^{76}$$Br: T$$_{1/2}$$ = 16.1hr, $$^{64}$$Cu: T$$_{1/2}$$ = 12.7hr) and they may have great potentials for PET utility. In this study, we synthesized monoclonal antibody (mAb) labeled with $$^{64}$$Cu or $$^{76}$$Br and evaluated their potential for tumor diagnosis with PET. The results of tumor localization studies show that $$^{64}$$Cu or $$^{76}$$Br labeled mAb were highly accumulated to tumor. From these data, the use of $$^{64}$$Cu and $$^{76}$$Br has great advantage for PET utility.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.