Refine your search:     
Report No.

Mechanistic study on lithium intercalation using a restricted reaction field in LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$

Sakamoto, Kazuyuki*; Konishi, Hiroaki*; Sonoyama, Noriyuki*; Yamada, Atsuo*; Tamura, Kazuhisa  ; Mizuki, Junichiro; Kanno, Ryoji*

Structure changes of LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$ were detected at the electrode/electrolyte interface of lithium cell using synchrotron X-ray scattering and two-dimensional model electrodes. The electrodes were constructed by an epitaxial film of LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$ synthesized by pulsed laser deposition (PLD) method. The orientation of the film depends on the substrate plane; the 2D layer of LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$ is parallel to the SrTiO$$_{3}$$(1 1 0) substrate ((1 1 0) LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$//(1 1 0) SrTiO$$_{3}$$), while the 2D layer is perpendicular to the SrTiO$$_{3}$$(1 1 1) substrate ((0 0 3) LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$//(1 1 1) SrTiO$$_{3}$$). The ${it in situ}$ X-ray diffraction of LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$(0 0 3) confirmed three-dimensional lithium diffusion through the two-dimensional transition meal layers. The intercalation reaction of LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$ will be discussed.



- Accesses




Category:Chemistry, Physical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.