Refine your search:     
Report No.
 - 

Progress in development of the advanced Thomson scattering diagnostics

Hatae, Takaki; Howard, J.*; Ebizuka, Noboru*; Yoshida, Hidetsugu*; Nakatsuka, Masahiro*; Fujita, Hisanori*; Narihara, Kazumichi*; Yamada, Ichihiro*; Funaba, Hisamichi*; Hirano, Yoichi*; Koguchi, Haruhisa*; Kajita, Shin*; Naito, Osamu

We have developed new technologies for an advanced Thomson scattering diagnostics to meet various requirements for understanding physical phenomena in fusion plasmas. These technologies for the advanced Thomson scattering diagnostics may contribute future Thomson scattering diagnostics. For example, a polarization interferometer is applicable for T$$_{e}$$ measurement with wide range and imaging measurement. A multipass Thomson scattering and high average power laser employing SBS-PCM may improve the S/N ratio and repetition rate for the measurement, and allows measurement with high spatial resolution. An SBS-PC is a promising technology for LIDAR to generate short laser pulse. A Cr, Nd:YAG will be used for high-efficiency and high average power laser system. Fully relativistic formulae will contribute to the spectrum analysis with wide Te range. A guideline to optimize wavelength channels will be useful for a design of spectrometer.

Accesses

:

- Accesses

InCites™

:

Percentile:69.52

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.