Refine your search:     
Report No.
 - 

Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure study on oxidative etching of diamond-like carbon films by hyperthermal atomic oxygen

Tagawa, Masahito*; Yokota, Kumiko*; Kitamura, Akira*; Matsumoto, Koji*; Yoshigoe, Akitaka ; Teraoka, Yuden; Kanda, Kazuhiro*; Niibe, Masahito*

Surface structural changes of a hydrogenated diamond-like carbon (DLC) film exposed to a hyperthermal atomic oxygen beam were investigated by Rutherford backscattering spectroscopy (RBS), synchrotron radiation photoelectron spectroscopy (SR-PES), and near-edge X-ray absorption fine structure (NEXAFS). It was confirmed that the DLC surface was oxidized and etched by high-energy collisions of atomic oxygen. RBS and real-time mass-loss data showed a linear relationship between etching and atomic oxygen fluence. SR-PES data suggested that the oxide layer was restricted to the topmost surface of the DLC film. NEXAFS data were interpreted to mean that the sp$$^{2}$$ structure at the DLC surface was selectively etched by collisions with hyperthermal atomic oxygen, and an sp$$^{3}$$-rich region remained at the topmost DLC surface. The formation of an sp$$^{3}$$-rich layer at the DLC surface led to surface roughening and a reduced erosion yield relative to the pristine DLC surface.

Accesses

:

- Accesses

InCites™

:

Percentile:50.83

Category:Chemistry, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.