Refine your search:     
Report No.
 - 

Theoretical optimization of base doping concentration for radiation resistance of InGaP subcells of InGaP/GaAs/Ge based on minority-carrier lifetime

Elfiky, D.*; Yamaguchi, Masafumi*; Sasaki, Takuo*; Takamoto, Tatsuya*; Morioka, Chiharu*; Imaizumi, Mitsuru*; Oshima, Takeshi; Sato, Shinichiro; Elnawawy, M.*; Eldesoky, T.*; Ghitas, A.*

One of the fundamental objectives for research and development of space solar cells is to improve their radiation resistance. InGaP solar cells with low base carrier concentrations under low-energy proton irradiations have shown high radiation resistances. In this study, an analytical model for low-energy proton radiation damage to InGaP subcells based on a fundamental approach for radiative and nonradiative recombinations has been proposed. The radiation resistance of InGaP subcells as a function of base carrier concentration has been analyzed by using the radiative recombination lifetime and damage coefficient K for the minority-carrier lifetime of InGaP. Numerical analysis shows that an InGaP solar cell with a lower base carrier concentration is more radiation-resistant. Satisfactory agreements between analytical and experimental results have been obtained, and these results show the validity of the analytical procedure. The damage coefficients for minority-carrier diffusion length and carrier removal rate with low-energy proton irradiations have been observed to be dependent on carrier concentration through this study. As physical mechanisms behind the difference observed between the radiation-resistant properties of various base doping concentrations, two mechanisms, namely, the effect of a depletion layer as a carrier collection layer and generation of the impurity-related complex defects due to low-energy protons stopping within the active region, have been proposed.

Accesses

:

- Accesses

InCites™

:

Percentile:55.27

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.