Refine your search:     
Report No.

Conceptual design for a large-scale Japan sodium-cooled fast reactor, 3; Core design in JSFR

Okubo, Tsutomu; Oki, Shigeo; Ogura, Masashi*; Okubo, Yoshiyuki*; Kotake, Shoji*

A conceptual design study and related R&D on a commercial-base large-scale Japan Sodium-cooled Fast Reactor (JSFR) have been carried out in the framework of the Fast Reactor Cycle Technology development (FaCT) project. As a next generation plant, JSFR adopts a number of innovative technologies in order to achieve economic competitiveness, enhanced reliability and safety. This paper describes the current results of the ongoing conceptual design study on the JSFR core. The most important point in the core design is to achieve a high core average burn-up around 150 GWd/t, assuming the ODS steel utilization as the cladding material. Another design target for the breeding ratio is intended to have some flexibility and is set at from around 1.0 to 1.2 under the design philosophy of the compatible fuel assembly among them. Also, the fuel composition is considered to have some variation range based on the wide variety of the spent fuel composition expected to be treated during the LWR to FBR transition period. The core design study performed in the FaCT project has clarified the feasibility of the JSFR core concept, which is based on the high internal conversion ratio type core using a large fuel rod diameter around 10 mm and satisfies a number of design targets and requirements including ones mentioned above.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.