Refine your search:     
Report No.
 - 

Numerical simulations for the coupled thermal-mechanical processes in $"A$sp$"o$ Pillar Stability Experiment; Continuum and discontinuum based approaches

Koyama, Tomofumi*; Shimizu, Hiroyuki*; Chijimatsu, Masakazu*; Kobayashi, Akira*; Nakama, Shigeo ; Fujita, Tomoo 

In this paper, the coupled thermal-mechanical processes in the pillar stability experiments carried out at the $"A$sp$"o$ Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using both Finite Element Method (FEM) and Distinct Element Method (DEM) with particles. The main purpose for in-situ experiment is to investigate the yielding strength of crystalline rock and the formation and growth of the excavation disturbed/damaged zone (EDZ) during excavation and heating processes. For the 3-D numerical simulations using FEM (called THAMES), the measured in-situ stress and its time evolutions (stress re-distribution) due to the tunnel and two borehole excavations, pressurize in one of the borehole as well as heating process were considered. On the other hand, in 2-D DEM simulations, one of the borehole cross sections (in 2-D) was selected and modeled as an assemblage of many particles bonded each other to investigate the failure mechanism during excavation and heating processes in detail including crack propagation at the borehole surface (spalling phenomena). The microscopic parameters used in the DEM simulations were determined by the calibration using the laboratory uniaxial/triaxial compression testing results. The calculation results such as stress distribution, displacements as well as temperature distribution were compared with the in-situ observation and measurements. The simulation results from 3-D FEM shows good agreement with the data obtained from the measurements. The simulated crack propagation during the excavation, pressurizing and heating processes by DEM with particles agrees qualitatively well with the observation. The findings obtained from two different types of numerical simulations can be used for the performance and safety assessment of nuclear waste disposal.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.