Refine your search:     
Report No.
 - 

Measurement of DNA double-strand break yield in human cancer cells by high-current, short-duration bunches of laser-accelerated protons

Yogo, Akifumi; Sato, Katsutoshi; Nishikino, Masaharu; Maeda, Takuya*; Sakaki, Hironao; Hori, Toshihiko*; Ogura, Koichi; Nishiuchi, Mamiko; Teshima, Teruki*; Nishimura, Hiroaki*; Kondo, Kiminori; Bolton, P.; Kawanishi, Shunichi*

To investigate the radiobiological effects of high dose rates that are attributed to high current, short bunch beam generation with laser-dreven ion acceleration, we have developed an experimental setup that uses laser-accelerated protons. ${it In-vitro}$ human lung cancer cells: A549 pulmonary adenocarcinoma are irradiated with a laser-accelerated proton bunches with a duration of $$2 times 10^{-8}$$ s and flux of $$sim10^{15}$$ cm$$^{-2}$$s$$^{-1}$$, amounting to single bunch absorbed dose at the 1 Gy level. The double-strand break (DSB) yield in cell DNA is analyzed for the laser-accelerated proton beam at an average LET of 41 keV/$$mu$$m.

Accesses

:

- Accesses

InCites™

:

Percentile:34.07

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.