Refine your search:     
Report No.
 - 

Hydrogen isotope permeation from cooling water through various metal piping

Hayashi, Takumi; Nakamura, Hirofumi; Isobe, Kanetsugu; Kobayashi, Kazuhiro; Oyaizu, Makoto; Yamanishi, Toshihiko; Oya, Yasuhisa*; Okuno, Kenji*

In order to investigate the behavior of hydrogen isotope on the water-metal boundary, deuterium permeation experiments from heavy water vessel through various metal piping, such as pure iron (Fe), nickel (Ni), stainless steel (SS304), and pure iron with 10 $$mu$$m gold plating, were performed at 573 K and at 15 MPa. During the experiment, surfaces of metal piping except gold plating one were oxidized at the heavy water boundary and then deuterium would generate by the oxidation reactions. This deuterium could be detected by mass spectrometer, which monitored the inside gases of the piping under vacuum. The result showed clearly that the deuterium permeated through Fe, Ni, and SS304 piping was detected as deuterium gas (D$$_{2}$$) under vacuum, though that through gold plating one could not be detected effectively. The D$$_{2}$$ permeation rate through Fe, Ni, and SS304 piping reached some stabilized value. This paper summarizes the above experimental results and discusses the mechanism of deuterium behavior on the water metal boundary.

Accesses

:

- Accesses

InCites™

:

Percentile:52.49

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.