Tensile mechanical properties of a stainless steel irradiated up to 19 dpa in the Swiss spallation neutron source
Saito, Shigeru ; Kikuchi, Kenji*; Hamaguchi, Dai; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; Dai, Y.*
To evaluate the lifetime of the beam window of an accelerator-driven transmutation system (ADS), post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out. The specimens tested in this study were made from the austenitic steel JPCA (Japan primary candidate alloy). The specimens were irradiated at SINQ Target 4 (STIP-II) with high-energy protons and spallation neutrons. The irradiation conditions were as follows: the proton energy was 580 MeV, irradiation temperatures ranged from 100 to 430C, and displacement damage levels ranged from 7.1 to 19.5 dpa. Tensile tests were performed in air at room temperature (R.T.), 250C and 350C. Fracture surface observation after the tests was done by SEM (Scanning electron microscope). Results of the tensile tests performed at R.T. showed the extra hardening of JPCA at higher dose compared to the fission neutron irradiated data. At the higher temperatures, 250C and 350C, the extra hardening was not observed. Degradation of ductility bottomed around 10 dpa, and specimens kept their ductility until 19.5 dpa. All specimens fractured in ductile manner. The result from a microstructure observation on a specimen irradiated to 19.3 dpa at 420C indicates that some agglomeration of bubbles on grain boundaries was observed in the specimen irradiated to 19.3 dpa at 420C. However the tensile specimen irradiated up to 18.4 dpa at 425C still exhibited little loss of ductility. Since He/dpa was very high on SINQ target irradiations, the formation of highly dense small bubbles in the matrix consequently avoided the accumulation of He on grain boundaries, which might have resulted in avoiding grain boundary embrittlement.