Dissolutions of oxide dispersion strengthened ferritic steels in various nitric acid solutions, 2; The Amount of the corrosion products in the dissolution process
Inoue, Masaki ; Suto, Mitsuo; Koyama, Shinichi ; Otsuka, Satoshi ; Kaito, Takeji
In order to exammine the applicability for advanced aqueous reprocessing system, the martensitic oxide dispersion strengthened ferritic steel (9Cr-ODS steel), which is the primary candidate material for high burnup fuel pin cladding tube in fast reactor cycle, was evaluated for the amount of corrosion products in the dissolution process. The quantity of corrosion products was calculated to investigate the influence of both various chemical processes and waste glass (vitrified high level radioactive wastes) by use of the results of a maximum cladding temperature fuel subassembly and the sum of all fuel subassemblies, respectively. The experimental results of immersion tests in flowing liquid sodium loops and fuel pin irradiation tests in fast reactors were reviewed to consider the effect of outer and inner corrosions in high burnup fuel pins on corrosion products. This work revealed that the sum of corrosion products depends largely on the mass transfer behavior in flowing liquid sodium.