Refine your search:     
Report No.

Excitation functions for production of Rf isotopes in the $$^{248}$$Cm + $$^{18}$$O reaction

Murakami, Masashi*; Goto, Shinichi*; Murayama, Hirofumi*; Kojima, Takayuki*; Kudo, Hisaaki*; Kaji, Daiya*; Morimoto, Koji*; Haba, Hiromitsu*; Kudo, Yuki*; Sumita, Takayuki*; Sakai, Ryutaro*; Yoneda, Akira*; Morita, Kosuke*; Kasamatsu, Yoshitaka*; Kikunaga, Hidetoshi*; Sato, Tetsuya   

Production cross sections of Rf isotopes in the $$^{248}$$Cm + $$^{18}$$O reaction were measured at the beam energy range of 88.2 to 101.3 MeV by use of a gas-filled recoil ion separator. The excitation functions of $$^{260}$$Rf, $$^{261a}$$Rf, and $$^{262}$$Rf were obtained together with those of spontaneously fissioning nuclides which have few-second half-lives and have been assigned to $$^{261b}$$Rf and a longer-lived state of $$^{262}$$Rf. The excitation function of few-second spontaneously fissioning nuclide exhibited the maximum cross section at the $$^{18}$$O beam energy of 94.8 MeV. The shape of the excitation function was almost the same as that of $$^{261a}$$Rf, whereas it was quite different from those of $$^{260}$$Rf and $$^{262}$$Rf. A few-second spontaneously fissioning nuclide previously reported as $$^{261b}$$Rf and $$^{262}$$Rf observed in$$^{248}$$Cm + $$^{18}$$O reaction was identified as $$^{261b}$$Rf.



- Accesses




Category:Physics, Nuclear



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.