Refine your search:     
Report No.
 - 

Effect on sintering property of MoO$$_{3}$$ pellets from different MoO$$_{3}$$ powders

Nishikata, Kaori  ; Kimura, Akihiro ; Kakei, Sadanori*; Niizeki, Tomotake*; Ishida, Takuya; Yoshinaga, Hideo*; Hasegawa, Yoshio*; Tsuchiya, Kunihiko 

Every year in Japan, nuclear medical of about 900,000 cases are carried out using technetiume-99m ($$^{99m}$$Tc). It is ranked as the second in the world. But all of the $$^{99m}$$Tc is imported from the other countries. Therefore, we are developing the (n, $$gamma$$) method for $$^{99}$$Mo production, as part of "increase of industrial use" in resumed operations after restart of Japan Materials Tasting Reactor (JMTR). In the study to establish the $$^{99}$$Mo production method through the (n, $$gamma$$) process domestically using the JMTR, three different MoO$$_{3}$$ powders such as fresh, recycled and $$^{98}$$Mo enriched ones were selected, and characterized as in SEM and sintering. As a result, the high dense MoO$$_{3}$$ pellet manufactured by the fresh powder attained over 90%T. D. at the sintering temperature of 500$$^{circ}$$C. On the other hand, pellets manufactured by the other powders needs sintering temperature above 580$$^{circ}$$C to attain over 90%T.D., resulting in an influence on the particle size and shape dependences for the sintering property.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.