検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Change in mechanical properties of austenitic stainless steels due to very high cycle fatigue

オーステナイト系ステンレス鋼の超高サイクル疲労による力学特性変化

Xiong, Z.; 直江 崇   ; 二川 正敏  ; 前川 克廣*

Xiong, Z.; Naoe, Takashi; Futakawa, Masatoshi; Maekawa, Katsuhiro*

オーステナイト系ステンレス鋼であるSUS316Lは、核破砕中性子源の水銀ターゲット容器構造材として使用されている。ターゲット容器は、陽子及び中性子照射環境に曝されるのに加えて、50 1/S程度の高ひずみ速度で、2$$times$$10$$^8$$以上の繰り返し応力負荷を受ける。本研究では、SUS316L、及び照射による転位導入を模擬した10%冷間圧延材について、室温中における超高サイクル領域の疲労強度を超音波疲労試験法により調べた。さらに、疲労過程における力学特性変化について、疲労試験後の硬度及び残強度測定により評価した。その結果、転位導入により疲労限度が1.5倍程度向上することを確認した。また、受け入れ材では、繰り返し負荷による転位蓄積に起因すると考えられる、硬度及び最大引張り強さの上昇が観測された。一方、冷間圧延材では、10$$^6$$回以下では、繰り返し負荷による軟化が生じ、その後、硬度が上昇する傾向が見られた。

An austenitic stainless steel, SUS316L is currently being used in the liquid mercury pulsed spallation neutron source as the structural material of the mercury enclosure vessel, so called target vessel. The target vessel suffers cyclic loading in which the total number of cycles in the service life is higher than 2$$times$$10$$^8$$, with a high strain rate of 50 1/s at maximum under intensive proton and neutron irradiation environment. In present work, the very high cycle fatigue strength was investigated using the specimens that had the different dislocation density at room temperature. The tensile strength and hardness of the failed specimen were measured to understand the change in mechanical properties during fatigue test in addition to the fatigue strength evaluation. It was found that the fatigue failure still occurred in the very high cycle region. The fatigue strength was increased with the dislocation density. For the SA 316L, cyclic hardening, the hardness was increasing with the number of cycles, was observed. However, 10% CW316L showed obvious softening, the hardness decreased while the number of cycles was less than 10$$^6$$6 and then increased while the number of cycles was beyond 10$$^6$$.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.