Refine your search:     
Report No.
 - 

Adsorption of H atoms on cubic Er$$_2$$O$$_3$$ (001) surface; A DFT study

Mao, W.*; Chikada, Takumi*; Shimura, Kenichiro*; Suzuki, Akihiro*; Yamaguchi, Kenji; Terai, Takayuki*

In this work, ${it ab initio}$ calculations based on density functional theory (DFT) and generalized gradient approximation were performed to investigate the structural and electronic properties of the cubic Er$$_{2}$$O$$_{3}$$ (001) surface and H adsorption processes on this surface. Several stable adsorption sites were identified, and at the most energetically favorable adsorption sites it was found that H bonds with O atoms at the cubic Er$$_{2}$$O$$_{3}$$ (001) surface with an adsorption energy of 295.68 kJ mol$$^{-1}$$ at coverage 1/8 ML, which was inclined to decrease with the increase of H coverage ($$>$$ 1/4 ML). In addition, the calculations revealed that the dissociative H atom configurations have adsorption energies that are at least 152.64 kJ mol$$^{-1}$$ greater than the H$$_2$$ molecule configurations on the surface. These results are discussed in regard of the hydrogen isotope permeation behavior in the tritium permeation barrier in a fusion reactor.

Accesses

:

- Accesses

InCites™

:

Percentile:68.05

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.