Refine your search:     
Report No.
 - 

Diffusion and adsorption of uranyl ion in clays; Molecular dynamics study

Arima, Tatsumi*; Idemitsu, Kazuya*; Inagaki, Yaohiro*; Kawamura, Katsuyuki*; Tachi, Yukio  ; Yotsuji, Kenji

Diffusion and adsorption behavior of uranyl (UO$$_2^{2+}$$) species is important for the performance assessment of radioactive waste disposal. The diffusion behaviors of UO$$_2^{2+}$$, K$$^{+}$$, CO$$_3^{2-}$$ and Cl$$^{-}$$ and H$$_{2}$$O in the aqueous solutions were evaluated by molecular dynamics (MD) calculations. The diffusion coefficient (De) of UO$$_2^{2+}$$ is the smallest and is 26% less than the self-diffusion coefficient of H$$_{2}$$O. For the aqueous solution with high concentration of carbonate ions, uranyl carbonate complexes: UO$$_{2}$$CO$$_{3}$$ and UO$$_{2}$$(CO$$_{3}$$)$$^{2-}$$ can be observed. For the clay (montmorillonite or illite)-aqueous solution systems, the adsorption and diffusion behaviors of UO$$_2^{2+}$$ and K$$^{+}$$ were evaluated by MD calculations. The distribution coefficients (Kd) increase with the layer charge of clay, and Kd of UO$$_2^{2+}$$ might be smaller than that of K$$^{+}$$. Further, their two-dimensional diffusion coefficients were relatively small in the adsorption layer and were extremely small for illite with higher layer charge.

Accesses

:

- Accesses

InCites™

:

Percentile:68.36

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.