Refine your search:     
Report No.

Gigacycle fatigue behaviour of austenitic stainless steels used for mercury target vessels

Naoe, Takashi  ; Xiong, Z.; Futakawa, Masatoshi 

Mercury enclosure vessel of the JSNS made of an austenitic stainless steel suffers radiation damage in the proton and neutron environment. In addition to the radiation damage, the vessel suffers the cyclic impact loading caused from the pressure waves. The JSNS target vessel suffers higher than 2$$times$$10$$^8$$ cyclic loading. Furthermore, strain rate of the beam window portion of the target vessel reaches to 50s$$^{-1}$$ at the maximum, which is much higher than the conventional fatigues. Very high cycle fatigue strengths up to 10$$^9$$ cycles for solution annealed (SA) and 10% cold-worked 316L (CW) were investigated through the ultrasonic fatigue test. The result showed that the fatigue strengths of SA and CW tested in high-strain rate were higher than that of the conventional fatigue. On the other hand, the fatigue failure occurred regardless of material and temperature in the very high-cycle region ($$10^7 sim 10^9$$ cycles) at the stress amplitude of below the conventional fatigue limit.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.