Refine your search:     
Report No.

Physics and engineering studies of the advanced divertor for a fusion reactor

Asakura, Nobuyuki; Hoshino, Kazuo; Uto, Hiroyasu; Shinya, Kichiro*; Tokunaga, Shinsuke; Shimizu, Katsuhiro; Someya, Yoji; Tobita, Kenji; Ono, Noriyasu*

A short super-X divertor is proposed as a new option for fusion divertor, where field line length from the divertor null to the outer target (L//div) was largely increased (more than two times) in a similar size of conventional divertor. Physics and engineering design studies have progressed. Minimal number of the divertor coils (1 or 2) were installed inside the toroidal field coil (TFC), i.e. interlink-winding (interlink). Arrangement of the poloidal field coils (PFCs) and their currents were determined, taking into account of the engineering design such as vacuum vessel and the neutron shield structures, and maintenance scenario of the divertor and blankets. Divertor plasma simulation showed that large radiation region is produced between the super-X null and the target, and the plasma temperature becomes low (1-2 eV) both at the inner and outer divertors, i.e. fully detached plasma was obtained efficiently.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.