Refine your search:     
Report No.
 - 

In-situ structural integrity evaluation for high-power pulsed spallation neutron source by using a laser Doppler method

Wan, T.; Naoe, Takashi   ; Wakui, Takashi  ; Haga, Katsuhiro  ; Kogawa, Hiroyuki  ; Futakawa, Masatoshi  

High power accelerator driven pulsed spallation neutron sources are being developed in the world. Mercury is used as a target material to produce neutrons via the spallation reaction induced by injected protons. At the moment of the proton injection, the mercury vessel with a double wall structure is impulsively excited by the interaction between mercury and solid wall. The vibrational signals were measured in noncontact and remotely by using a Laser Doppler Vibrometer (LDV) system to evaluate the structure integrity. The extreme damages were assumed as the first step, i.e., the inner structure was partly broken by erosion. The dependency of vibrational behaviors on the damage was systematically investigated through numerical simulations and experiments. A LDV was installed to monitor the dependency of an electro-Magnetic Impact Testing Machine (MIMTM) vibration on the damage size. Through the numerical simulation, it was found that the target vessel vibration depends on the damage size. A technique referred to a Wavelet Differential Analysis (WDA) has been developed to enhance the effect of damages on the impulsive vibration behavior. However, the vibration signals obtained from MIMTM contain considerable noise. In order to reduce the noise effect on the impulsive vibration behavior, the statistical methods referred to an Analysis of Variance (ANOVA) and an Analysis of Covariance (ANCOVA) was applied. Numerical simulation results that obtained from controlling the damage size, were firstly added to random noise with various levels manually, and then were analyzed by the statistic methods. Then, the field data that measured from the real mercury target was analyzed. The results represent that the combination of WDA and ANOVA/ANCOVA could effectively indicate the damage dependency.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.