Refine your search:     
Report No.
 - 

Radiation response of silicon carbide metal-oxide-semiconductor transistors in high dose region

Oshima, Takeshi; Yokoseki, Takashi; Murata, Koichi; Matsuda, Takuma; Mitomo, Satoshi; Abe, Hiroshi; Makino, Takahiro; Onoda, Shinobu; Hijikata, Yasuto*; Tanaka, Yuki*; Kandori, Mikio*; Okubo, Shuichi*; Yoshie, Toru*

In this study, we report the effects of $$gamma$$-ray irradiation and subsequent annealing on the electrical characteristics of vertical structure power 4H Silicon Carbide (SiC) Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) with the blocking voltage of 1200 V. The MOSFETs were irradiated with $$gamma$$-rays up to 1.2 MGy in a N$$_{2}$$ atmosphere at room temperature (RT). During the irradiation, no bias was applied to each electrode of the MOSFETs. After the irradiation, the MOSFETs were kept at RT for 240 h to investigate the stability of their degraded characteristics. Then, the irradiated MOSFETs were annealed up to 360 $$^{circ}$$C in the atmosphere. The current-voltage (I-V) characteristics of the MOSFETs were measured at RT. By 1.2 MGy irradiation, the shift of threshold voltage (V$$_{T}$$) for the MOSFETs was -3.39 V. After RT preservation for 240 h, MOSFETs showed no significant recovery in V$$_{T}$$. By annealing up to 360 $$^{circ}$$C, the MOSFETs showed remarkable recovery, and the values of V$$_{T}$$ become 91 % of the initial values. Those results indicate that the degraded characteristics of SiC MOSFETs can be recovered by thermal annealing at 360 $$^{circ}$$C.

Accesses

:

- Accesses

InCites™

:

Percentile:43.79

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.