Evaluation of oxidation efficiency of hydrophobic palladium catalyst for C monitoring in gaseous radioactive waste
Ueno, Yumi ; Nakagawa, Masahiro ; Sato, Junya ; Iwai, Yasunori
In the Nuclear Science Research Institute, Japan Atomic Energy Agency (JAEA), in order to oxidize C, which exists in various chemical forms in exhaust, into CO, a copper oxide (CuO) catalyst is introduced after heating to 600C. Our goal was to establish a safer C monitoring system by lowering the heating temperature required for the catalyst; therefore, we developed a new hydrophobic palladium/silicon dioxide (Pd/SiO) catalyst that makes the carrier's surface hydrophobic. In these experiments, catalysts CuO, platinum/aluminum oxide (Pt/AlO), palladium/zirconium dioxide (Pd/ZrO), hydrophobic Pd/SiO, and hydrophilic Pd/SiO were ventilated with standard methane gas, and we compared the oxidation efficiency of each catalyst at different temperatures. As a result, we determined that the hydrophobic Pd/SiO catalyst had the best oxidation efficiency. By substituting the currently used CuO catalyst with the hydrophobic Pd/SiO catalyst, we will be able to lower the working temperature from 600C to 300C and improve the safety of the monitoring process.