Refine your search:     
Report No.
 - 

Theoretical elucidation of space charge effects on the coupled-bunch instability at the 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex

Shobuda, Yoshihiro; Chin, Y. H.*; Saha, P. K.; Hotchi, Hideaki; Harada, Hiroyuki; Irie, Yoshiro*; Tamura, Fumihiko  ; Tani, Norio; Toyama, Takeshi*; Watanabe, Yasuhiro; Yamamoto, Masanobu

The Rapid Cycling Synchrotron (RCS), whose beam energy ranges from 400 MeV to 3 GeV and which is located in the Japan Proton Accelerator Research Complex, is a kicker-impedance dominant machine, which violates the impedance budget from a classical viewpoint. Contrary to conventional understanding, we have succeeded to accelerate a 1-MW equivalent beam. The machine has some interesting features: for instance, the beam tends to be unstable for the smaller transverse beam size, the beam is stabilized by increasing the peak current ${it etc}$. Space charge effects play an important role in the beam instability at the RCS. In this study, a new theory has been developed to calculate the beam growth rate with the head-tail and coupled-bunch modes ($$m,mu$$) while taking space charge effects into account. The theory sufficiently explains the distinctive features of the beam instabilities at the RCS.

Accesses

:

- Accesses

InCites™

:

Percentile:24.43

Category:Physics, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.