Refine your search:     
Report No.
 - 

In situ electrochemical study on crevice environment of stainless steel in high temperature water

Soma, Yasutaka   ; Kato, Chiaki   ; Ueno, Fumiyoshi  

In-situ electrochemical measurement within crevice of stainless steel in 288$$^{circ}$$C water has been conducted to analyze crevice water chemistry. Small sensors ($$phi$$ $$sim$$ 250$$mu$$m) measured local solution electrical conductivity, $$kappa$$$$_{rm crev}$$, polarization resistance, and electrochemical corrosion potential. Real-time response of the $$kappa$$$$_{rm crev}$$ as functions of bulk water conductivity, dissolved oxygen (DO) concentration has been quantitatively analyzed. The effect of geometrical factors on the crevice environment was also studied. The $$kappa$$$$_{rm crev}$$ differ more than an order of magnitude depending on the oxygen potential inside the crevice. The $$kappa$$$$_{rm crev}$$ increased by small amount of bulk DO (e.g. 30 ppb). Maximum $$kappa$$$$_{rm crev}$$ was observed with DO of 32000 ppb and became more than 100 times higher than that of bulk water. Crevice geometry affected significantly on the water chemistry inside.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.