Refine your search:     
Report No.

Pulsed Electric Current Sintering of MoO$$_{3}$$ for Production of Radioactive Isotopes

Suematsu, Hisayuki*; Sato, Soma*; Seki, Misaki* ; Nanko, Makoto*; Nishikata, Kaori ; Suzuki, Yoshitaka  ; Tsuchiya, Kunihiko ; Suzuki, Tsuneo*; Nakayama, Tadachika*; Niihara, Koichi*

$$^{99m}$$Tc has been utilized as a radioactive isotope in medical applications. The majority of this isotope has been separated from nuclear fission products in testing reactors with highly enriched $$^{235}$$U fuel. However, these reactors have been shut down because of the age and the nuclear security reasons. On the other hand, a nuclear reaction method has been proposed. This method is to irradiate $$^{98}$$Mo by neutrons in a reactor to form $$^{98}$$Mo and then to decay to $$^{99m}$$Tc. As the target, MoO$$_{3}$$ pellets are required. However, because of the low evaporation temperature (700 $$^{circ}$$C) and coarse grain size of $$^{98}$$Mo enriched powder, it was difficult to obtain high density MoO$$_{3}$$ pellets. To overcome this problem, a two-step loading method in pulsed electric current sintering was carried out in this study.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.