検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Preparation of $$gamma$$-LiV$$_{2}$$O$$_{5}$$ from polyoxovanadate cluster Li$$_{7}$$[V$$_{15}$$O$$_{36}$$(CO$$_{3}$$)] as a high-performance cathode material and its reaction mechanism revealed by ${{it operando}}$ XAFS

バナジウム酸化物クラスターからの高性能正極電極作製および電極反応機構のオペランドXAFSによる解明

Wang, H.*; 磯部 仁*; 清水 剛志*; 松村 大樹  ; 伊奈 稔哲*; 吉川 浩史*

Wang, H.*; Idobe, Jin*; Shimizu, Takeshi*; Matsumura, Daiju; Ina, Toshiaki*; Yoshikawa, Hirofumi*

$$gamma$$-phase LiV$$_{2}$$O$$_{5}$$, which shows superior electrochemical performance as cathode material in Li-ion batteries, was prepared by annealing the polyoxovanadate cluster Li$$_{7}$$[V$$_{15}$$O$$_{36}$$(CO$$_{3}$$)]. The reaction mechanism was studied using ${{it operando}}$ X-ray absorption fine structure (XAFS), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS) analyses. The X-ray absorption near edge structure (XANES) and XPS results reveal that $$gamma$$-LiV$$_{2}$$O$$_{5}$$ undergoes two-electron redox reaction per V$$_{2}$$O$$_{5}$$ pyramid unit, resulting in a large reversible capacity of 260 Ah/kg. The extended X-ray absorption fine structure (EXAFS) and PXRD analyses also suggest that the V-V distance slightly increases, due to the reduction of V$$^{5+}$$ to V$$^{4+}$$ during Li ion intercalation as the material structure is maintained. As a result, $$gamma$$-Li$$_{x}$$V$$_{2}$$O$$_{5}$$ shows highly reversible electrochemical reaction with x = 0.1-1.9.

Access

:

- Accesses

InCites™

:

パーセンタイル:44.85

分野:Chemistry, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.